1
|
Li L, Cho KH, Yu X, Cheng S. Systematic multi-omics investigation of androgen receptor driven gene expression and epigenetics changes in prostate cancer. Comput Biol Med 2025; 189:110000. [PMID: 40056843 DOI: 10.1016/j.compbiomed.2025.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Prostate cancer, a common malignancy, is driven by androgen receptor (AR) signaling. Understanding the function of AR signaling is critical for prostate cancer research. METHODS We performed multi-omics data analysis for the AR+, androgen-sensitive LNCaP cell line, focusing on gene expression (RNAseq), chromatin accessibility (ATACseq), and transcription factor binding (ChIPseq). High-quality datasets were curated from public repositories and processed using state-of-the-art bioinformatics tools. RESULTS Our analysis identified 1004 up-regulated and 707 down-regulated genes in response to androgen deprivation therapy (ADT) which diminished AR signaling activity. Gene-set enrichment analysis revealed that AR signaling influences pathways related to neuron differentiation, cell adhesion, P53 signaling, and inflammation. ATACseq and ChIPseq data demonstrated that as a transcription factor, AR primarily binds to distal enhancers, influencing chromatin modifications without affecting proximal promoter regions. In addition, the AR-induced genes maintained higher active chromatin states than AR-inhibited genes, even under ADT conditions. Furthermore, ADT did not directly induce neuroendocrine differentiation in LNCaP cells, suggesting a complex mechanism behind neuroendocrine prostate cancer development. In addition, a publicly available online application LNCaP-ADT (https://pcatools.shinyapps.io/shinyADT/) was launched for users to visualize and browse data generated by this study. CONCLUSION This study provides a comprehensive multi-omics dataset, elucidating the role of AR signaling in prostate cancer at the transcriptomic and epigenomic levels. The reprocessed data is publicly available, offering a valuable resource for future prostate cancer research.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Kyung Hyun Cho
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Urology, LSU Health Shreveport, Shreveport, LA, USA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
2
|
Shen L, Qi Z, Ai Y, Zhang J, Chao Y, Han L, Xu L. Integration of ATAC-seq and RNA-seq reveals the dynamics of chromatin accessibility and gene expression in zoysiagrass response to drought. PLANT CELL REPORTS 2025; 44:92. [PMID: 40167783 DOI: 10.1007/s00299-025-03469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
KEY MESSAGE The 'X4' accession of zoysiagrass demonstrated superior drought tolerance compared to other accessions. Integration analysis of transcriptomics and epigenomics revealed a positive correlation between ATAC-seq peak intensity and gene expression levels. Six motifs involved in regulating drought responses were identified, which are similar to the domains of the ERF and C2H2 transcription factor families. Heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress, allowing robust growth even at high PEG6000 concentrations. Zoysiagrass is renowned for its drought tolerance and serves as an exceptional domestic turfgrass in China. However, the changes in chromatin accessibility during drought in zoysiagrass are not well understood. We conducted a preliminary evaluation of the phenotypic changes in drought tolerance for six zoysiagrass cultivars, taking into account their growth characteristics and physiological traits under drought conditions. Additionally, we utilized an integrated multi-omics strategy, encompassing RNA sequencing (RNA-seq), Assay for Transposase Accessible Chromatin using high-throughput sequencing (ATAC-seq), and reverse transcription quantitative PCR (RT-qPCR) verification experiments, to gain deeper understanding of the chromatin accessibility patterns linked to gene expression in response to drought stress in zoysiagrass. Preliminary analysis of the trends in relative water content and proline content suggested that the variety 'X4' exhibited superior drought tolerance compared to the other five accessions. The KEGG pathway enrichment analysis revealed that zoysiagrass responded to environmental stress by regulating stress response and antioxidant defense pathways. Notably, the expression levels of genes Zja03G031540 and Zja11G000860 were significantly increased in the 'X4' zoysiagrass genotype, which exhibited improved drought tolerance, compared to the 'X1' zoysiagrass genotype with reduced drought tolerance. This study suggested that 63 high-confidence genes are related to drought stress, including Zja03G031540 and Zja11G000860. Additionally, six motifs regulating drought responses were unearthed. Furthermore, the heterologous expression of Zja11G000860 in yeast enhanced tolerance to drought stress. The study discovered a positive correlation between ATAC-seq peak intensity and gene expression levels. The expression of high-confidence genes was linked to zoysiagrass resistance evaluation and phenotypic traits, implying that these genes are involved in responding to external drought stress. This study combined ATAC-seq and RNA-seq technologies for the first time to identify drought-related gene expression in zoysiagrass, elucidating the grass adaptation to environmental stress and the regulatory mechanisms underlying stress responses, and laying the groundwork for zoysiagrass improvement and breeding.
Collapse
Affiliation(s)
- Liangying Shen
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Zewen Qi
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
- Institute of Advanced Agricultural Sciences, Peking University, Shandong, 261325, China
| | - Ye Ai
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Jiahang Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grsassland Administration, Beijing, 100083, China.
| | - Lixin Xu
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Li C, Liu X, Liu J, Zhang X, Wu J, Ji X, Niu H, Xu Q. Chromatin accessibility and transcriptional landscape in PK-15 cells during early exposure to Aflatoxin B 1. Biochem Biophys Res Commun 2024; 731:150394. [PMID: 39024978 DOI: 10.1016/j.bbrc.2024.150394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Pig Bio-breeding Research Institute, Zhengzhou, Henan, China; Henan Livestock and Poultry Genetic Resources Protection Engineering Technology Research Center, Zhengzhou, China.
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Xuanxuan Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Xiangbo Ji
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Pig Bio-breeding Research Institute, Zhengzhou, Henan, China; Henan Livestock and Poultry Genetic Resources Protection Engineering Technology Research Center, Zhengzhou, China.
| |
Collapse
|
4
|
Loers JU, Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief Bioinform 2024; 25:bbae382. [PMID: 39207727 PMCID: PMC11359808 DOI: 10.1093/bib/bbae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Eukaryotic gene regulation is a combinatorial, dynamic, and quantitative process that plays a vital role in development and disease and can be modeled at a systems level in gene regulatory networks (GRNs). The wealth of multi-omics data measured on the same samples and even on the same cells has lifted the field of GRN inference to the next stage. Combinations of (single-cell) transcriptomics and chromatin accessibility allow the prediction of fine-grained regulatory programs that go beyond mere correlation of transcription factor and target gene expression, with enhancer GRNs (eGRNs) modeling molecular interactions between transcription factors, regulatory elements, and target genes. In this review, we highlight the key components for successful (e)GRN inference from (sc)RNA-seq and (sc)ATAC-seq data exemplified by state-of-the-art methods as well as open challenges and future developments. Moreover, we address preprocessing strategies, metacell generation and computational omics pairing, transcription factor binding site detection, and linear and three-dimensional approaches to identify chromatin interactions as well as dynamic and causal eGRN inference. We believe that the integration of transcriptomics together with epigenomics data at a single-cell level is the new standard for mechanistic network inference, and that it can be further advanced with integrating additional omics layers and spatiotemporal data, as well as with shifting the focus towards more quantitative and causal modeling strategies.
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Li L, Hyun Cho K, Yu X, Cheng S. Systematic Multi-Omics Investigation of Androgen Receptor Driven Gene Expression and Epigenetics changes in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604505. [PMID: 39091838 PMCID: PMC11291036 DOI: 10.1101/2024.07.22.604505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Prostate cancer, a common malignancy, is driven by androgen receptor (AR) signaling. Understanding the function of AR signaling is critical for prostate cancer research. Methods We performed multi-omics data analysis for the AR+, androgen-sensitive LNCaP cell line, focusing on gene expression (RNAseq), chromatin accessibility (ATACseq), and transcription factor binding (ChIPseq). High-quality datasets were curated from public repositories and processed using state-of-the-art bioinformatics tools. Results Our analysis identified 1004 up-regulated and 707 down-regulated genes in response to androgen deprivation therapy (ADT) which diminished AR signaling activity. Gene-set enrichment analysis revealed that AR signaling influences pathways related to neuron differentiation, cell adhesion, P53 signaling, and inflammation. ATACseq and ChIPseq data demonstrated that as a transcription factor, AR primarily binds to distal enhancers, influencing chromatin modifications without affecting proximal promoter regions. In addition, the AR-induced genes maintained higher active chromatin states than AR-inhibited genes, even under ADT conditions. Furthermore, ADT did not directly induce neuroendocrine differentiation in LNCaP cells, suggesting a complex mechanism behind neuroendocrine prostate cancer development. In addition, a publicly available online application LNCaP-ADT (https://pcatools.shinyapps.io/shinyADT/) was launched for users to visualize and browse data generated by this study. Conclusion This study provides a comprehensive multi-omics dataset, elucidating the role of AR signaling in prostate cancer at the transcriptomic and epigenomic levels. The reprocessed data is publicly available, offering a valuable resource for future prostate cancer research.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Kyung Hyun Cho
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
| | - Xiuping Yu
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
- Department of Urology, LSU Health Shreveport, Shreveport, LA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| |
Collapse
|
6
|
Khandibharad S, Singh S. Single-cell ATAC sequencing identifies sleepy macrophages during reciprocity of cytokines in L. major infection. Microbiol Spectr 2024; 12:e0347823. [PMID: 38299832 PMCID: PMC10913457 DOI: 10.1128/spectrum.03478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The hallmark characteristic of macrophages lies in their inherent plasticity, allowing them to adapt to dynamic microenvironments. Leishmania strategically modulates the phenotypic plasticity of macrophages, creating a favorable environment for intracellular survival and persistent infection through regulatory cytokine such as interleukin (IL)-10. Nevertheless, these effector cells can counteract infection by modulating crucial cytokines like IL-12 and key components involved in its production. Using sophisticated tool of single-cell assay for transposase accessible chromatin (ATAC) sequencing, we systematically examined the regulatory axis of IL-10 and IL-12 in a time-dependent manner during Leishmania major infection in macrophages Our analysis revealed the cellular heterogeneity post-infection with the regulators of IL-10 and IL-12, unveiling a reciprocal relationship between these cytokines. Notably, our significant findings highlighted the presence of sleepy macrophages and their pivotal role in mediating reciprocity between IL-10 and IL-12. To summarize, the roles of cytokine expression, transcription factors, cell cycle, and epigenetics of host cell machinery were vital in identification of sleepy macrophages, which is a transient state where transcription factors controlled the epigenetic remodeling and expression of genes involved in pro-inflammatory cytokine expression and recruitment of immune cells.IMPORTANCELeishmaniasis is an endemic affecting 99 countries and territories globally, as outlined in the 2022 World Health Organization report. The disease's severity is compounded by compromised host immune systems, emphasizing the pivotal role of the interplay between parasite and host immune factors in disease regulation. In instances of cutaneous leishmaniasis induced by L. major, macrophages function as sentinel cells. Our findings indicate that the plasticity and phenotype of macrophages can be modulated to express a cytokine profile involving IL-10 and IL-12, mediated by the regulation of transcription factors and their target genes post-L. major infection in macrophages. Employing sophisticated methodologies such as single-cell ATAC sequencing and computational genomics, we have identified a distinctive subset of macrophages termed "sleepy macrophages." These macrophages exhibit downregulated housekeeping genes while expressing a unique set of variable features. This data set constitutes a valuable resource for comprehending the intricate host-parasite interplay during L. major infection.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
7
|
Wei H, Zhong Z, Li Z, Zhang Y, Stukenbrock EH, Tang B, Yang N, Baroncelli R, Peng L, Liu Z, He X, Yang Y, Yuan Z. Loss of the accessory chromosome converts a pathogenic tree-root fungus into a mutualistic endophyte. PLANT COMMUNICATIONS 2024; 5:100672. [PMID: 37563834 PMCID: PMC10811371 DOI: 10.1016/j.xplc.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a ∼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.
Collapse
Affiliation(s)
- Huanshen Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118 Kiel, Germany; Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| | - Ningning Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| | - Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinghua He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yuzhan Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
8
|
Rocks D, Jaric I, Bellia F, Cham H, Greally JM, Suzuki M, Kundakovic M. Early-life stress and ovarian hormones alter transcriptional regulation in the nucleus accumbens resulting in sex-specific responses to cocaine. Cell Rep 2023; 42:113187. [PMID: 37777968 PMCID: PMC10753961 DOI: 10.1016/j.celrep.2023.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Early-life stress and ovarian hormones contribute to increased female vulnerability to cocaine addiction. Here, we reveal molecular substrates in the reward area, the nucleus accumbens, through which these female-specific factors affect immediate and conditioning responses to cocaine. We find shared involvement of X chromosome inactivation-related and estrogen signaling-related gene regulation in enhanced conditioning responses following early-life stress and during the low-estrogenic state in females. Low-estrogenic females respond to acute cocaine by opening neuronal chromatin enriched for the sites of ΔFosB, a transcription factor implicated in chronic cocaine response and addiction. Conversely, high-estrogenic females respond to cocaine by preferential chromatin closing, providing a mechanism for limiting cocaine-driven chromatin and synaptic plasticity. We find that physiological estrogen withdrawal, early-life stress, and absence of one X chromosome all nullify the protective effect of a high-estrogenic state on cocaine conditioning in females. Our findings offer a molecular framework to enable understanding of sex-specific neuronal mechanisms underlying cocaine use disorder.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Fabio Bellia
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - John M Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
9
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. Core conserved transcriptional regulatory networks define the invasive trophoblast cell lineage. Development 2023; 150:dev201826. [PMID: 37417811 PMCID: PMC10445752 DOI: 10.1242/dev.201826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, USA
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. CORE CONSERVED TRANSCRIPTIONAL REGULATORY NETWORKS DEFINE THE INVASIVE TROPHOBLAST CELL LINEAGE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534962. [PMID: 37066272 PMCID: PMC10103937 DOI: 10.1101/2023.03.30.534962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The invasive trophoblast cell lineage in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model to study hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus (sn) ATAC-seq data from gestation day (gd) 15.5 and 19.5 rat uterine-placental interface tissues and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial, and smooth muscle cells, and compared invasive trophoblast chromatin accessibility to extravillous trophoblast (EVT) cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO, 64108
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| |
Collapse
|
11
|
Anderson AG, Rogers BB, Loupe JM, Rodriguez-Nunez I, Roberts SC, White LM, Brazell JN, Bunney WE, Bunney BG, Watson SJ, Cochran JN, Myers RM, Rizzardi LF. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer's disease-specific cis-regulatory elements. CELL GENOMICS 2023; 3:100263. [PMID: 36950385 PMCID: PMC10025452 DOI: 10.1016/j.xgen.2023.100263] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer's disease (AD) and unaffected controls have been well documented, but few studies have rigorously interrogated the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics (snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcriptional changes. We detected 319,861 significant correlations, or links, between gene expression and cell type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the activity of many regions, including several candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Microglia links were globally enriched for heritability of AD risk and previously identified active regulatory regions.
Collapse
Affiliation(s)
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Lauren M. White
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stanley J. Watson
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
12
|
Jia R, Lin J, You J, Li S, Shan G, Huang C. The DEAD-box helicase Hlc regulates basal transcription and chromatin opening of stress-responsive genes. Nucleic Acids Res 2022; 50:9175-9189. [PMID: 35950495 PMCID: PMC9458421 DOI: 10.1093/nar/gkac684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stress-responsive genes are lowly transcribed under normal conditions and robustly induced in response to stress. The significant difference between basal and induced transcription indicates that the general transcriptional machinery requires a mechanism to distinguish each transcription state. However, what factors specifically function in basal transcription remains poorly understood. Using a classic model stress-responsive gene (Drosophila MtnA), we found that knockdown of the DEAD-box helicase Hlc resulted in a significant transcription attenuation of MtnA under normal, but not stressed, conditions. Mechanistically, Hlc directly binds to the MtnA locus to maintain the accessibility of chromatin near the transcriptional start site, which allows the recruitment of RNA polymerase II and subsequent MtnA transcription. Using RNA-seq, we then identified plenty of additional stress-responsive genes whose basal transcription was reduced upon knockdown of Hlc. Taken together, these data suggest that Hlc-mediated basal transcription regulation is an essential and widespread mechanism for precise control of stress-responsive genes.
Collapse
Affiliation(s)
| | | | | | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- To whom correspondence should be addressed. Tel: +86 19956025374;
| |
Collapse
|