1
|
Wang F, Miao H, Zhang S, Hu X, Li C, Yang W, Chen J. Identification of a New Major Oil Content QTL Overlapped with FAD2B in Cultivated Peanut ( Arachis hypogaea L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:615. [PMID: 40006875 PMCID: PMC11859173 DOI: 10.3390/plants14040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
High oil content in peanut seeds is a key breeding objective for peanut (Arachis hypogaea L.) quality improvement. In order to explore the genetic basis of oil content in peanuts, a recombinant inbred line (RIL) population consisting of 256 lines was phenotyped across six environments. Continuous distribution and transgressive segregation for both oil content and oleic acid content were demonstrated across all environments. Quantitative trait locus (QTL) analysis yielded 15 additive QTLs explaining 4.34 to 23.10% of phenotypic variations. A novel stable and major QTL region conditioning oil content (qOCB09.1) was mapped to chromosome B09, spanning a 1.99 Mb genomic region with 153 putative genes, including the oleic acid gene FAD2B, which may influence the oil content. Candidate genes were identified and diagnostic markers for this region were developed for further investigation. Additionally, 18 pairs of epistatic interactions involving 35 loci were identified to affect the oil content, explaining 1.25 to 1.84% of phenotypic variations. These findings provide valuable insights for further map-based cloning of favorable alleles for oil content in peanuts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Chen
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.W.); (H.M.); (S.Z.); (X.H.); (C.L.); (W.Y.)
| |
Collapse
|
2
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Gultyaev AP, Koster C, van Batenburg DC, Sistermans T, van Belle N, Vijfvinkel D, Roussis A. Conserved structured domains in plant non-coding RNA enod40, their evolution and recruitment of sequences from transposable elements. NAR Genom Bioinform 2023; 5:lqad091. [PMID: 37850034 PMCID: PMC10578108 DOI: 10.1093/nargab/lqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Plant long noncoding RNA enod40 is involved in the regulation of symbiotic associations with bacteria, in particular, in nitrogen-fixing root nodules of legumes, and with fungi in phosphate-acquiring arbuscular mycorrhizae formed by various plants. The presence of enod40 genes in plants that do not form such symbioses indicates its other roles in cell physiology. The molecular mechanisms of enod40 RNA function are poorly understood. Enod40 RNAs form several structured domains, conserved to different extents. Due to relatively low sequence similarity, identification of enod40 sequences in plant genomes is not straightforward, and many enod40 genes remain unannotated even in complete genomes. Here, we used comparative structure analysis and sequence similarity searches in order to locate enod40 genes and determine enod40 RNA structures in nitrogen-fixing clade plants and in grasses. The structures combine conserved features with considerable diversity of structural elements, including insertions of structured domain modules originating from transposable elements. Remarkably, these insertions contain sequences similar to tandem repeats and several stem-loops are homologous to microRNA precursors.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Celine Koster
- Life Science & Technology Honours College, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Amsterdam University Medical Center, Department of Human Genetics, section Ophthalmogenetics, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - Diederik Cames van Batenburg
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- CareRate, Unit E1.165, Stationsplein 45, 3013 AK Rotterdam, The Netherlands
| | - Tom Sistermans
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Niels van Belle
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Daan Vijfvinkel
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Andreas Roussis
- National & Kapodistrian University of Athens, Faculty of Biology, Section of Botany, Group Molecular Plant Physiology, Panepistimiopolis - Zografou - Athens, 15784, Greece
| |
Collapse
|