1
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Beiki H, Murdoch BM, Park CA, Kern C, Kontechy D, Becker G, Rincon G, Jiang H, Zhou H, Thorne J, Koltes JE, Michal JJ, Davenport K, Rijnkels M, Ross PJ, Hu R, Corum S, McKay S, Smith TPL, Liu W, Ma W, Zhang X, Xu X, Han X, Jiang Z, Hu ZL, Reecy JM. Enhanced bovine genome annotation through integration of transcriptomics and epi-transcriptomics datasets facilitates genomic biology. Gigascience 2024; 13:giae019. [PMID: 38626724 PMCID: PMC11020238 DOI: 10.1093/gigascience/giae019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/29/2023] [Accepted: 03/27/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS These validated results show significant improvement over current bovine genome annotations.
Collapse
Affiliation(s)
- Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brenda M Murdoch
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Carissa A Park
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chandlar Kern
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Denise Kontechy
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Gabrielle Becker
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | | | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, VA 24060, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jacob Thorne
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jennifer J Michal
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Kimberly Davenport
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, TX 77843, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Rui Hu
- Department of Animal and Poultry Sciences, Virginia Tech, VA 24060, USA
| | - Sarah Corum
- Zoetis, Parsippany-Troy Hills, NJ 07054, USA
| | | | | | - Wansheng Liu
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Wenzhi Ma
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Xiaohui Zhang
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Xiaoqing Xu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Xuelei Han
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Zhihua Jiang
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Zhi-Liang Hu
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|