1
|
Setiabudiawan TP, Apriani L, Verrall AJ, Utami F, Schneider M, Indrati AR, Halim PP, Kaplonek P, Malca H, Lee JSL, Moorlag SJCFM, de Bree LCJ, Mourits VP, Joosten LAB, Netea MG, Alisjahbana B, McNamara RP, Alter G, van Laarhoven A, Ussher JE, Sharples K, Koeken VACM, Hill PC, van Crevel R. Immune correlates of early clearance of Mycobacterium tuberculosis among tuberculosis household contacts in Indonesia. Nat Commun 2025; 16:309. [PMID: 39747050 PMCID: PMC11695729 DOI: 10.1038/s41467-024-55501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Some individuals, even when heavily exposed to an infectious tuberculosis patient, do not develop a specific T-cell response as measured by interferon-gamma release assay (IGRA). This could be explained by an IFN-γ-independent adaptive immune response, or an effective innate host response clearing Mycobacterium tuberculosis (Mtb) without adaptive immunity. In heavily exposed Indonesian tuberculosis household contacts (n = 1347), a persistently IGRA negative status was associated with presence of a BCG scar, and - especially among those with a BCG scar - with altered innate immune cells dynamics, higher heterologous (Escherichia coli-induced) proinflammatory cytokine production, and higher inflammatory proteins in the IGRA mitogen tube. Neither circulating concentrations of Mtb-specific antibodies nor functional antibody activity associated with IGRA status at baseline or follow-up. In a cohort of adults in a low tuberculosis incidence setting, BCG vaccination induced heterologous innate cytokine production, but only marginally affected Mtb-specific antibody profiles. Our findings suggest that a more efficient host innate immune response, rather than a humoral response, mediates early clearance of Mtb. The protective effect of BCG vaccination against Mtb infection may be linked to innate immune priming, also termed 'trained immunity'.
Collapse
Affiliation(s)
- Todia P Setiabudiawan
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Lika Apriani
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ayesha J Verrall
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Fitria Utami
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Marion Schneider
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Agnes R Indrati
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Pauline P Halim
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Hadar Malca
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jessica Shih-Lu Lee
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Katrina Sharples
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Community for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Mora VP, Quero FB, Troncoso-Bravo T, Orellana C, Pereira P, Mackern-Oberti JP, Funes SC, Soto JA, Bohmwald K, Bueno SM, Kalergis AM. Partial long-term clinical improvement after a BCG challenge in systemic lupus erythematosus-prone mice. Autoimmunity 2024; 57:2380465. [PMID: 39034498 DOI: 10.1080/08916934.2024.2380465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.
Collapse
Affiliation(s)
- Valentina P Mora
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisco B Quero
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Orellana
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Samanta C Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy. Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Peña-Bates C, Lascurain R, Ortiz-Navarrete V, Chavez-Galan L. The BCG vaccine and SARS-CoV-2: Could there be a beneficial relationship? Heliyon 2024; 10:e38085. [PMID: 39347386 PMCID: PMC11437859 DOI: 10.1016/j.heliyon.2024.e38085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 disease continues to cause complications and deaths worldwide. Identifying effective immune protection strategies remains crucial to address this ongoing challenge. The Bacillus Calmette-Guérin (BCG) vaccine, developed initially to prevent pulmonary tuberculosis, has gained relevance due to its ability to induce cross-protection against other pathogens of the airways. This review summarizes research on the immunological protection provided by BCG, along with its primary clinical and therapeutic uses. It also explores the immunological features of COVID-19, the mechanisms implicated in host cell death, and its association with chronic pulmonary illnesses such as tuberculosis, which has led to complications in diagnosis and management. While vaccines against COVID-19 have been administered globally, uncertainty still exists about its effectiveness. Additionally, it is uncertain whether the utilization of BCG can regulate the immune response to pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Carlos Peña-Bates
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ricardo Lascurain
- Unidad de Enlace Científico, Faculty of Medicine, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
4
|
Krysztopa-Grzybowska K, Lach J, Polak M, Strapagiel D, Dziadek J, Olszewski M, Zasada AA, Darlińska A, Lutyńska A, Augustynowicz-Kopeć E. The whole genome sequence of Polish vaccine strain Mycobacterium bovis BCG Moreau. Microbiol Spectr 2024; 12:e0425923. [PMID: 38757975 PMCID: PMC11237378 DOI: 10.1128/spectrum.04259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.
Collapse
Affiliation(s)
- Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Mycobacterium Genetics and Physiology Unit, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aniela Darlińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
5
|
García-Bengoa M, Vergara EJ, Tran AC, Bossi L, Cooper AM, Pearl JE, Mussá T, von Köckritz-Blickwede M, Singh M, Reljic R. Immunogenicity of PE18, PE31, and PPE26 proteins from Mycobacterium tuberculosis in humans and mice. Front Immunol 2023; 14:1307429. [PMID: 38124744 PMCID: PMC10730732 DOI: 10.3389/fimmu.2023.1307429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The large family of PE and PPE proteins accounts for as much as 10% of the genome of Mycobacterium tuberculosis. In this study, we explored the immunogenicity of three proteins from this family, PE18, PE31, and PPE26, in humans and mice. Methods The investigation involved analyzing the immunoreactivity of the selected proteins using sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy donors from the TB endemic country Mozambique. Antigen-recall responses were examined in PBMC from these groups, including the evaluation of cellular responses in healthy unexposed individuals. Moreover, systemic priming and intranasal boosting with each protein, combined with the Quil-A adjuvant, were conducted in mice. Results We found that all three proteins are immunoreactive with sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy controls. Likewise, antigen-recall responses were induced in PBMC from all groups, and the proteins stimulated proliferation of peripheral blood mononuclear cells from healthy unexposed individuals. In mice, all three antigens induced IgG antibody responses in sera and predominantly IgG, rather than IgA, responses in bronchoalveolar lavage. Additionally, CD4+ and CD8+ effector memory T cell responses were observed in the spleen, with PE18 demonstrating the ability to induce tissue-resident memory T cells in the lungs. Discussion Having demonstrated immunogenicity in both humans and mice, the protective capacity of these antigens was evaluated by challenging immunized mice with low-dose aerosol of Mycobacterium tuberculosis H37Rv. The in vitro Mycobacterial Growth Inhibition Assay (MGIA) and assessment of viable bacteria in the lung did not demonstrate any ability of the vaccination protocol to reduce bacterial growth. We therefore concluded that these three specific PE/PPE proteins, while immunogenic in both humans and mice, were unable to confer protective immunity under these conditions.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Emil Joseph Vergara
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Andy C. Tran
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Lorenzo Bossi
- Immunxperts SA, a Q² Solutions Company, Gosselies, Belgium
| | - Andrea M. Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Tufária Mussá
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| |
Collapse
|