1
|
Liu Y, Wang L, Li Z, Li L, Ding T, Chen S, Duan P, Wang X, Qiu Y, Ding X, Tian Y. DNA Methylation and Transcriptome Profiling Reveal the Role of the Antioxidant Pathway and Lipid Metabolism in Plectropomus leopardus Skin Color Formation. Antioxidants (Basel) 2025; 14:93. [PMID: 39857428 PMCID: PMC11763275 DOI: 10.3390/antiox14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Leopard coral grouper (Plectropomus leopardus), possessing a distinct red body color, is an important species in commercial markets; however, the high ratio of black individuals under intensive cultivation has limited the commercial value of the species. To dissect the regulatory mechanisms underlying the red skin trait in P. leopardus, gene expression and DNA methylation modifications were compared between red and black skin tissues after astaxanthin treatment. Astaxanthin effectively increased the redness value a* and body weight. Multi-omics analyses revealed the crucial roles of pathways related to antioxidants and lipid metabolism, particularly "Tyrosine metabolism", "Melanogenesis", "Fatty acid metabolism", "Fatty acid elongation", and "Biosynthesis of unsaturated acids", in red skin coloration. A molecular network for the regulation of red skin coloration in P. leopardus was constructed, and pmel, tyr, tyrp1a, tyrp1b, dct, slc24a5, wnt1, acsl4, elovl1, elovl6l.1, elovl6l.2, and elovl7 were identified as key genes. Notably, pmel, acsl4, and elovl7 were negatively regulated by differential DNA methylation. Our results provide new insight into the molecular and epigenetic mechanisms of body color variation, representing a significant step towards breeding for the red skin trait in P. leopardus.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Tangtang Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuai Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| |
Collapse
|
2
|
Ng TT, Lau CC, Tan MP, Wong LL, Sung YY, Muhammad TST, Liying S, Danish-Daniel M. Comparative Transcriptome Analysis Reveals Differential Cutaneous Gene Expression in the Color Variation of Two Ornamental Discus, Red Melon and Red Cover. Pigment Cell Melanoma Res 2024; 37:881-888. [PMID: 39140294 DOI: 10.1111/pcmr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Red Melon (RM) and Red Cover (RC) discus (Symphysodon spp.) are ornamental fish varieties that were selectively bred from the wild parental lineages of the brown discus S. aquafaciatus over many generations, resulting in distinct cutaneous patterns from juveniles to adults. To better understand the underlying mechanisms, skin samples were collected from juveniles aged 60 days and adults aged 1 year from RM and RC for investigations. Microscopic observation detected xanthophores and erythrophores in all samples, except RC juveniles with no erythrophores. Melanophores were presented only in RC. The comparative analysis revealed that genes involved in pteridine synthesis (gch1 and zgc:153031), one-carbon metabolism (aldh1l2 and zgc153031), and lipid metabolism (apoda and klf1) were differentially expressed in RM juveniles, which may be associated with the development of erythrophores and xanthophores. The temporal inhibition of melanophore differentiation and development was observed in RM juveniles, coupled with elevated expression of notum2 and sost, two antagonist genes in Wnt-signaling, suggesting their roles in melanophore development. Distinct pigment pattern between RM and RC since the juvenile stage may be driven by the differential expression of multiple axial developmental genes, including GATA, ankyrin, and mitotic spindle orientation proteins. This is the first report to describe the differential growth of cutaneous pigments and the molecular processes involved in red discus. The results provided valuable insights into pigment pattern differences in an interesting ornamental fish model.
Collapse
Affiliation(s)
- Tian Tsyh Ng
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Aquacity Tropical Fish Sdn. Bhd., Kuala Lumpur, Malaysia
| | - Cher Chien Lau
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Tengku Sifzizul Tengku Muhammad
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Sui Liying
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Zhu Z, Lin R, Zhao B, Shi W, Cai Q, Zhang L, Xin Q, Li L, Miao Z, Zhou S, Huang Z, Huang Q, Zheng N. Whole-genome resequencing revealed the population structure and selection signal of 4 indigenous Chinese laying ducks. Poult Sci 2024; 103:103832. [PMID: 38781766 PMCID: PMC11145554 DOI: 10.1016/j.psj.2024.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The assessment of animal genetic structure had significant importance for the preservation and breeding of animal germplasm resources. Selection signals are genotype markers generated during the process of biological evolution, and the detection of selection signals could reveal the direction of species evolution. The aim of this study was to generate a whole-genome resequencing data from Jinding duck, Shanma duck, Youxian Partridge duck, and Taiwan Brown tsaiya duck to reveal their population structure and selection signals. The population structure analysis revealed significant genetic differences among the 4 indigenous laying ducks, indicating their independent lineage. Specifically, Shanma duck and Youxian partridge duck were closely and likely originated from a common ancestor. In addition, selection sweep analysis was performed using the population genetic differentiation coefficient (Fst) and nucleotide diversity ratio (π ratio). The top 5% was used as the threshold for the Fst and π ratio, and the 2 thresholds were combined to identify selected genomic regions. In the selected regions of the 3 comparison groups, 136, 143, and 268 candidate genes were detected. Further screening of all candidate genes revealed that 35 candidate genes appeared simultaneously in 3 comparative groups, with 16 genes annotated. The 16 genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results revealed 5 functional genes (AQP3, PIK3C3, NOL6, RPP25, and DCTN3) that may be related to important economic traits in laying ducks and involved mainly invasopressin-regulated water reabsorption, ribosome biogenesis, and the PI3K signaling pathway. The results provide insights into the protection and exploitation of genetic resources of Chinese indigenous laying ducks.
Collapse
Affiliation(s)
- Zhiming Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bangzhe Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiannan Cai
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linli Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Shiyi Zhou
- Seed Industry Development Center of Shishi, Shishi 362700, China
| | - Zhongbin Huang
- Seed Industry Development Center of Shishi, Shishi 362700, China
| | - Qinlou Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Nenzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
4
|
Tang S, Janpoom S, Prasertlux S, Rongmung P, Ittarat W, Ratdee O, Khamnamtong B, Klinbunga S. Identification of pigmentation genes in skin, muscle and tail of a Thai-flag variety of Siamese fighting fish Betta splendens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101243. [PMID: 38749208 DOI: 10.1016/j.cbd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
Pigmentation genes expressed in skin, body muscle and tail of Thai-flag compared with Blue, White and Red varieties of Siamese fighting fish Betta splendens were identified. In total, 22,919 new unigenes were found. Pearson correlation and PCA analysis revealed that expression profiles of genes in muscle, skin and tail across solid color variety were similar. In contrast, those in skin and red tail part of Thai-flag were closely related but they showed different expression profiles with the white tail part. Moreover, 21,347-64,965 SNPs were identified in exonic regions of identified genes. In total, 28,899 genes were differentially expressed between paired comparisons of libraries where 13,907 genes (48.12 %) were upregulated and 14,992 genes (51.88 %) were downregulated. DEGs between paired libraries were 106-5775 genes relative to the compared libraries (56-2982 and 50-2782 for upregulated and downregulated DEGs). Interestingly, 432 pigmentation genes of B. splendens were found. Of these, 297 DEGs showed differential expression between varieties. Many DEGs in melanogenesis (Bsmcr1r, Bsmcr5r, and Bsslc2a15b), tyrosine metabolism (Bstyr, Bstyrp1b and Bsdct), stripe repressor (BsAsip1 and BsAsip2b), pteridine (Bsgch2) and carotenoid (BsBco2) biosynthesis were downregulated in the Thai-flag compared with solid color varieties. Expression of Bsbco1l, Bsfrem2b, Bskcnj13, Bszic2a and Bspah in skin, muscle and tail of Thai-flag, Blue, Red and White varieties was analyzed by qRT-PCR and revealed differential expression between fish varieties and showed anatomical tissue-preferred expression patterns in the same fish variety. The information could be applied to assist genetic-based development of new B. splendens varieties in the future.
Collapse
Affiliation(s)
- Sureerat Tang
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirithorn Janpoom
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirikan Prasertlux
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Puttawan Rongmung
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanwipa Ittarat
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Onchuda Ratdee
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Bavornlak Khamnamtong
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
5
|
Ding H, Wang M, Wang M, Wu S, Guo Y, Gao Y, Li L, Bao Z, Wang B, Hu J. Synchronously sexual maturity in hermaphrodite fish as revealed by transcriptome analysis in Plectropomus leopardus. Gene 2024; 901:148166. [PMID: 38242379 DOI: 10.1016/j.gene.2024.148166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Leopard coral grouper (Plectropomus leopardus) is a type of hermaphrodite fish, but the mechanisms of gonadal development and gametogenesis remain unclear. In the present study, we performed histological observation and transcriptomic analysis during the process of sexual differentiation in P. leopardus. According to the histological results, sexual differentiation was completed at 15 months old, developed synchronously in male and female individuals at 2 years old, and matured synchronously at 3 years old. Comparative transcriptomic analyses showed that the gonadal had differentiated by 15 months old, with enrichment of pathways associated with cell proliferation, transcriptional metabolism, and germline stem cell differentiation. Furthermore, cilium movement and fatty acid anabolism, which are associated with spermatogenesis and oocyte growth, were significantly enriched at 3 years old. In addition, key genes associated with male and female sex differentiation, such as amh, dmrt1, dmrt2a, zp4, sox3, gdf9, and gsdf, were identified by weighted gene co-expression network analysis (WGCNA). Finally, the localization and expression of the key genes amh and sox3 were observed in different cell types within the testes and ovaries, reflecting the development of the testes and ovaries, respectively. All the evidence indicates that P. leopardus is a hermaphrodite and synchronously sexually mature fish. Our study complements the gonadal development patterns of hermaphroditic fish by providing new insights into the molecular mechanisms underlying sexual differentiation and sex change in hermaphroditic groupers.
Collapse
Affiliation(s)
- Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yilan Guo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yurui Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Lin Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
6
|
Wu HY, Chen KS, Huang YS, Hsieh HY, Tsai HY. Correction: Comparative transcriptome analysis of skin color-associated genes in leopard coral grouper (Plectropomus leopardus). BMC Genomics 2023; 24:71. [PMID: 36765277 PMCID: PMC9921104 DOI: 10.1186/s12864-023-09153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Hung-Yi Wu
- grid.412036.20000 0004 0531 9758Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Kao-Sung Chen
- grid.19188.390000 0004 0546 0241Institute of Fisheries Science, National Taiwan University, Taipei City, Taiwan ,grid.453140.70000 0001 1957 0060Planning and Information Division, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - You-Syu Huang
- grid.412036.20000 0004 0531 9758Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan ,Eastern Marine Biology Research Center, Taitung City, Taiwan
| | - Hern-Yi Hsieh
- Penghu Marine Biology Research Center, Penghu County, Magong, Taiwan
| | - Hsin Yuan Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| |
Collapse
|