1
|
Sun F, Chen Y, Luo Y, Yang F, Yu T, Han H, Yang Y, Zhou Y. Cryptochromes (CRYs) in pepper: Genome-wide identification, evolution and functional analysis of the negative role of CaCRY1 under Phytophthora capsici infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112460. [PMID: 40057046 DOI: 10.1016/j.plantsci.2025.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Cryptochromes (CRYs) are ultraviolet-A (UV-A) and blue light photoreceptors that perceive UV-A and blue light to mediate a range of physiological processes including disease response in plants. However, there has been no report about the roles of CRY genes in pepper, which often suffers from Phytophthora blight caused by Phytophthora capsici. In this work, three pepper CRY genes were identified and their characteristics were examined by bioinformatics analysis. CaCRY1 is an ortholog of AtCRY1 located in the cytoplasm and nucleus, and expression analysis by RT-qPCR showed that its transcription was differentially regulated by jasmonic acid (JA) and salicylic acid (SA), as well as by P. capsici infection (PCI). Overexpression of CaCRY1 in pepper and Nicotiana benthamiana promoted the susceptibility of plants to PCI. Further virus-induced gene silencing (VIGS) analysis showed that silencing of CaCRY1 promoted the resistance of pepper plants to PCI with decreased disease index and transcripts of genes associated with SA biosynthesis. RNA-seq analysis showed that CaCRY1 silencing affected many genes in stress-related metabolic pathways. In summary, our findings show that CaCRY1 plays a negative role in the defense response of pepper to PCI, laying a foundation for studying the roles of CRYs in the future.
Collapse
Affiliation(s)
- Fei Sun
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Yue Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying Luo
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Feng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Yu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huibin Han
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yong Zhou
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Sudyoung N, Samosorn S, Dolsophon K, Nantavisai K, Pringsulaka O, Sirikantaramas S, Oikawa A, Sarawaneeyaruk S. Rhamnolipid-Enriched PA3 Fraction from Pseudomonas aeruginosa SWUC02 Primes Chili Plant Defense Against Anthracnose. Int J Mol Sci 2024; 25:12593. [PMID: 39684305 DOI: 10.3390/ijms252312593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Chili anthracnose, caused by Colletotrichum truncatum, causes significant yield loss in chili production. In this study, we investigated the elicitor properties of a rhamnolipid (RL)-enriched PA3 fraction derived from Pseudomonas aeruginosa SWUC02 in inducing systemic resistance in yellow chili seedlings and antifungal activity against C. truncatum CFPL01 (Col). Fractionation of the ethyl acetate extract yielded 12 fractions, with PA3 demonstrating the most effective disease suppression, reducing the disease severity index to 4 ± 7.35% at 7 days post-inoculation compared with Col inoculation alone (83 ± 23.57%). PA3 also exhibited direct antifungal activity, inhibiting Col mycelial growth by 41 ± 0.96% at 200 µg/mL. Subfractionation revealed PA3 as a mixture of mono- and di-RLs, confirmed by 1H nuclear magnetic resonance and electrospray ionization mass spectrometry data. Additionally, PA3 enhanced seed germination and promoted plant growth without causing phytotoxicity. Transcriptomics revealed that PA3 pre-treatment prior to Col infection primed the defense response, upregulating defense-related genes involved in the phenylpropanoid, flavonoid, and jasmonic acid biosynthesis pathways, as well as those associated with cell wall reinforcement. Our findings highlight the potential of RL-enriched PA3 as both an antifungal agent and a plant defense elicitor, with transcriptome data providing new insights into defense priming and resistance pathways in chili, offering an eco-friendly solution for sustainable anthracnose management.
Collapse
Affiliation(s)
- Natthida Sudyoung
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Kwannan Nantavisai
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Onanong Pringsulaka
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Siriruk Sarawaneeyaruk
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
3
|
Cui Q, Li X, Hu S, Yang D, Abozeid A, Yang Z, Jiang J, Ren Z, Li D, Li D, Zheng L, Qin A. The Critical Role of Phenylpropanoid Biosynthesis Pathway in Lily Resistance Against Gray Mold. Int J Mol Sci 2024; 25:11068. [PMID: 39456848 PMCID: PMC11507431 DOI: 10.3390/ijms252011068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Gray mold caused by Botrytis elliptica is one of the most determinative factors of lily growth and has become a major threat to lily productivity. However, the nature of the lily B. elliptica interaction remains largely unknown. Here, comparative transcriptomic and metabolomic were used to investigate the defense responses of resistant ('Sorbonne') and susceptible ('Tresor') lily cultivars to B. elliptica infection at 24 hpi. In total, 1326 metabolites were identified in 'Sorbonne' and 'Tresor' after infection, including a large number of phenylpropanoids. Specifically, the accumulation of four phenylpropanes, including eriodictyol, hesperetin, ferulic acid, and sinapyl alcohol, was significantly upregulated in the B. elliptica-infected 'Sorbonne' compared with the infected 'Tresor', and these phenylpropanes could significantly inhibit B. elliptica growth. At the transcript level, higher expression levels of F3'M, COMT, and CAD led to a higher content of resistance-related phenylpropanes (eriodictyol, ferulic acid, and sinapyl alcohol) in 'Sorbonne' following B. elliptica infection. It can be assumed that these phenylpropanes cause the resistance difference between 'Sorbonne' and 'Tresor', and could be the potential marker metabolites for gray mold resistance in the lily. Further transcriptional regulatory network analysis suggested that members of the AP2/ERF, WRKY, Trihelix, and MADS-M-type families positively regulated the biosynthesis of resistance-related phenylpropanes. Additionally, the expression patterns of genes involved in phenylpropanoid biosynthesis were confirmed using qRT-PCR. Therefore, we speculate that the degree of gray mold resistance in the lily is closely related to the contents of phenylpropanes and the transcript levels of the genes in the phenylpropanoid biosynthesis pathway. Our results not only improve our understanding of the lily's resistance mechanisms against B. elliptica, but also facilitate the genetic improvement of lily cultivars with gray mold resistance.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Xinran Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Shanshan Hu
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Ann Abozeid
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Zongqi Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Junhao Jiang
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Ziming Ren
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Danqing Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongze Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Liqun Zheng
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Anhua Qin
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| |
Collapse
|
4
|
Shi F, Zhang X, Wang Z, Wang X, Zou C. Unveiling molecular mechanisms of pepper resistance to Phytophthora capsici through grafting using iTRAQ-based proteomic analysis. Sci Rep 2024; 14:4789. [PMID: 38413819 PMCID: PMC10899238 DOI: 10.1038/s41598-024-55596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Phytophthora blight severely threatens global pepper production. Grafting bolsters plant disease resistance, but the underlying molecular mechanisms remain unclear. In this study, we used P. capsici-resistant strain 'ZCM334' and susceptible strain 'Early Calwonder' for grafting. Compared to self-rooted 'Early Calwonder' plants, 'ZCM334' grafts exhibited delayed disease onset, elevated resistance, and reduced leaf cell damage, showcasing the potential of grafting in enhancing pepper resistance to P. capsici. Proteomic analysis via the iTRAQ technology unveiled 478 and 349 differentially expressed proteins (DEPs) in the leaves and roots, respectively, between the grafts and self-rooted plants. These DEPs were linked to metabolism and cellular processes, stimulus responses, and catalytic activity and were significantly enriched in the biosynthesis of secondary metabolites, carbon fixation in photosynthetic organizations, and pyruvate metabolism pathways. Twelve DEPs exhibiting consistent expression trends in both leaves and roots, including seven related to P. capsici resistance, were screened. qRT-PCR analysis confirmed a significant correlation between the protein and transcript levels of DEPs after P. capsici inoculation. This study highlights the molecular mechanisms whereby grafting enhances pepper resistance to Phytophthora blight. Identification of key genes provides a foundation for studying the regulatory network governing the resistance of pepper to P. capsici.
Collapse
Affiliation(s)
- Fengyan Shi
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China
| | - Xi Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China
| | - Zhidan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xiuxue Wang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China
| | - Chunlei Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China.
| |
Collapse
|