1
|
Nakazawa D, Masuda S, Nishibata Y, Watanabe-Kusunoki K, Tomaru U, Ishizu A. Neutrophils and NETs in kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00944-3. [PMID: 40102634 DOI: 10.1038/s41581-025-00944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Neutrophils, conventionally regarded as a homogeneous immune cell population, have emerged as a heterogeneous group of cells with distinct gene profiles and immune properties. Activated neutrophils release a spectrum of bioactive substances, including cytokines, chemokines, proteolytic enzymes, reactive oxygen species and neutrophil extracellular traps (NETs), which are composed of decondensed DNA and antimicrobial proteins. NETs have a pivotal role in innate immunity, including in preventing the ascent of uropathogenic bacteria into the kidneys, as they efficiently trap pathogenic microorganisms. However, although indispensable for defence against pathogens, NETs also pose risks of self-damage owing to their cytotoxicity, thrombogenicity and autoantigenicity. Accordingly, neutrophils and NETs have been implicated in the pathogenesis of various disorders that affect the kidneys, including acute kidney injury, vasculitis, systemic lupus erythematosus, thrombotic microangiopathy and in various aetiologies of chronic kidney disease. Pathological alterations in the glomerular vascular wall can promote the infiltration of neutrophils, which can cause tissue damage and inflammation through their interactions with kidney-resident cells, including mesangial cells and podocytes, leading to local cell death. Targeting neutrophil activation and NET formation might therefore represent a new therapeutic strategy for these conditions.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Nishibata
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Weiss L, Macleod H, Maguire PB. Platelet-derived extracellular vesicles in cardiovascular disease and treatment - from maintaining homeostasis to targeted drug delivery. Curr Opin Hematol 2025; 32:4-13. [PMID: 39377239 PMCID: PMC11620325 DOI: 10.1097/moh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) remains a major global health burden. Rising incidences necessitate improved understanding of the pathophysiological processes underlying disease progression to foster the development of novel therapeutic strategies. Besides their well recognized role in CVD, platelet-derived extracellular vesicles (PEVs) mediate inter-organ cross talk and contribute to various inflammatory diseases. RECENT FINDINGS PEVs are readily accessible diagnostic biomarkers that mirror pathophysiological disease progression but also may confer cardioprotective properties. Monitoring the effects of modulation of PEV signatures through pharmacotherapies has also provided novel insights into treatment efficacy. Furthermore, exploiting their inherent ability to infiltrate thrombi, atherosclerotic plaques and solid tumours, PEVs as well as platelet-membrane coated nanoparticles are emerging as novel effective and targeted treatment options for CVD and cancer. SUMMARY Collectively, in-depth characterization of PEVs in various diseases ultimately enhances their use as diagnostic or prognostic biomarkers and potential therapeutic targets, making them clinically relevant candidates to positively impact patient outcomes.
Collapse
Affiliation(s)
- Luisa Weiss
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| | - Hayley Macleod
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
| | - Patricia B. Maguire
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Xin X, Koenen RR. Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases. Expert Opin Ther Targets 2025; 29:17-28. [PMID: 39817690 DOI: 10.1080/14728222.2025.2454617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration. AREAS COVERED This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV. EXPERT OPINION Studies have shown that the cargo of PEV may be dysregulated during cardiovascular disease and delivery to tissues can result in detrimental pathophysiologic effects. Counteracting this process might have the potential to inhibit inflammation, promote angiogenesis, and inhibit cardiomyocyte death. In addition, PEV have potential as biocompatible and autologous drug carriers. Therefore, better research on the mechanisms how PEV act during cardiovascular disease and could be implemented as a therapeutic will provide new perspectives for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Xin
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Maugeri N, Manfredi AA. Platelet HMGB1 steers intravascular immunity and thrombosis. J Thromb Haemost 2024; 22:3336-3345. [PMID: 39173879 DOI: 10.1016/j.jtha.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Platelets navigate the fine balance between homeostasis and injury. They regulate vascular homeostasis and drive repair after injury amidst leukocyte extravasation. Crucially, platelets initiate extracellular traps generation and promote immunothrombosis. In chronic human diseases, platelet action often extends beyond its normative role, sparking sustained reciprocal activation of leukocytes and mural cells, culminating in adverse vascular remodeling. Studies in the last decade have spotlighted a novel key player in platelet activation, the high mobility group box 1 (HMGB1) protein. Despite its initial characterization as a chromatin molecule, anucleated platelets express abundant HMGB1, which has emerged as a linchpin in thromboinflammatory risks and microvascular remodeling. We propose that a comprehensive assessment of platelet HMGB1, spanning quantification of content, membrane localization, and accumulation of HMGB1-expressing vesicles in biological fluids should be integral to dissecting and quantifying platelet activation. This review provides evidence supporting this claim and underscores the significance of platelet HMGB1 as a biomarker in conditions associated with heightened thrombotic risks and systemic microvascular involvement, spanning cardiovascular, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Norma Maugeri
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| | - Angelo A Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
van Wonderen SF, van Baarle FL, Tuip-de Boer AM, Polet CA, van Bruggen R, Vermeulen C, Klei TR, Hau CM, Nieuwland R, Veer CV’, Peters AL, de Bruin S, Vlaar AP, Biemond BJ, Müller MC. Hemostatic conditions following autologous transfusion of fresh vs stored platelets in experimental endotoxemia: an open-label randomized controlled trial with healthy volunteers. Res Pract Thromb Haemost 2024; 8:102612. [PMID: 39634321 PMCID: PMC11616504 DOI: 10.1016/j.rpth.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
Background Platelet increment is reportedly lower for maximum stored platelet concentrates (PCs) and during pyrexia, and in vitro function differs between fresh and stored PCs. However, little is known about the function of fresh and stored platelets during inflammation. Objectives The aim was to study differences in hemostatic function after transfusion of fresh or stored PCs in a human model of experimental endotoxemia. Methods Thirty-six healthy male subjects received either 2 ng/kg lipopolysaccharide (LPS) or a control (physiological saline 0.9%) and were randomly assigned to subsequently receive an autologous transfusion of either fresh (2-days-old) or stored (7-days-old) platelets, or saline control. Extracellular vesicles (EVs) were determined using flow cytometry, thrombin-antithrombin complex (TATc) was assessed using enzyme-linked immunosorbent assay, and hemostatic function was assessed using rotational thromboelastometry (ROTEM). Results LPS infusion caused a marked increase in TATc, EVs and fibrinolysis. Thromboelastometry data revealed that following infusion of LPS, subjects exhibited in general a hypocoagulable state compared with those not receiving LPS. Platelet transfusions led to a reduced clotting time and an augmentation in clot strength, indicated by maximum clot firmness, solely among subjects undergoing endotoxemia. There were no significant differences in TATc or amount of EVs release after transfusion of fresh or stored platelets. Conclusion A significant increase in TATc and EVs as well as a difference in hemostatic function after endotoxemia were observed. During endotoxemia, platelet transfusion resulted in enhanced coagulation and hemostatic function; however, no substantial differences were observed between transfusion of fresh or stored PCs.
Collapse
Affiliation(s)
- Stefan F. van Wonderen
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Floor L.F. van Baarle
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Anita M. Tuip-de Boer
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chantal A. Polet
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Christie Vermeulen
- Department of Product and Process Development, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Thomas R.L. Klei
- Department of Product and Process Development, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Chi M. Hau
- Laboratory for Experimental Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Laboratory for Experimental Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van ’t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Anna L. Peters
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Sanne de Bruin
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Bart J. Biemond
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Marcella C.A. Müller
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Feng J, Liu L, Liu J, Wang J. Immunological alterations in the endothelial barrier: a new predictive and therapeutic paradigm for sepsis. Expert Rev Clin Immunol 2024; 20:1205-1217. [PMID: 38850066 DOI: 10.1080/1744666x.2024.2366301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Despite the fact incidence and mortality vary widely among regions, sepsis remains a major cause of morbidity and cost worldwide. The importance of the endothelial barrier in sepsis and infectious diseases is increasingly recognized; however, the underlying pathophysiology of the endothelial barrier in sepsis remains poorly understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of immunological alterations in endothelial dysfunction, discussing the central role of endothelial barrier involved in sepsis to provide new predictive and therapeutic paradigm for sepsis. EXPERT OPINION Given its physiological and immunological functions in infectious diseases, the endothelial barrier has been dramatically altered in sepsis, suggesting that endothelial dysfunction may play a critical role in the pathogenesis of sepsis. Although many reliable biomarkers have been investigated to monitor endothelial activation and injury in an attempt to find diagnostic and therapeutic tools, there are no specific therapies to treat sepsis due to its complex pathophysiology. Since sepsis is initiated by both hyperinflammation and immunoparalysis occurring simultaneously, a 'one-treatment-fits-all' strategy for sepsis-induced immune injury and immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junya Liu
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Sun Z, Lv R, Zhao Y, Cai Z, Si X, Zhang Q, Liu X. Communications between Neutrophil-Endothelial Interaction in Immune Defense against Bacterial Infection. BIOLOGY 2024; 13:374. [PMID: 38927254 PMCID: PMC11200680 DOI: 10.3390/biology13060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
The endothelial barrier plays a critical role in immune defense against bacterial infection. Efficient interactions between neutrophils and endothelial cells facilitate the activation of both cell types. However, neutrophil activation can have dual effects, promoting bacterial clearance on one hand while triggering inflammation on the other. In this review, we provide a detailed overview of the cellular defense progression when neutrophils encounter bacteria, focusing specifically on neutrophil-endothelial interactions and endothelial activation or dysfunction. By elucidating the underlying mechanisms of inflammatory pathways, potential therapeutic targets for inflammation caused by endothelial dysfunction may be identified. Overall, our comprehensive understanding of neutrophil-endothelial interactions in modulating innate immunity provides deeper insights into therapeutic strategies for infectious diseases and further promotes the development of antibacterial and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhigang Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
| | - Ruoyi Lv
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China;
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Ziwen Cai
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
| | - Xiaohui Si
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
| | - Qian Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China;
| | - Xiaoye Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China; (Z.S.); (Y.Z.); (Z.C.); (X.S.)
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China;
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| |
Collapse
|
8
|
Ebeyer-Masotta M, Eichhorn T, Fischer MB, Weber V. Impact of production methods and storage conditions on extracellular vesicles in packed red blood cells and platelet concentrates. Transfus Apher Sci 2024; 63:103891. [PMID: 38336556 DOI: 10.1016/j.transci.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The use of blood and blood products can be life-saving, but there are also certain risks associated with their administration and use. Packed red blood cells (pRBCs) and platelet concentrates are the most commonly used blood products in transfusion medicine to treat anemia or acute and chronic bleeding disorders, respectively. During the production and storage of blood products, red blood cells and platelets release extracellular vesicles (EVs) as a result of the storage lesion, which may affect product quality. EVs are subcellular structures enclosed by a lipid bilayer and originate from the endosomal system or from the plasma membrane. They play a pivotal role in intercellular communication and are emerging as important regulators of inflammation and coagulation. Their cargo and their functional characteristics depend on the cell type from which they originate, as well as on their microenvironment, influencing their capacity to promote coagulation and inflammatory responses. Hence, the potential involvement of EVs in transfusion-related adverse events is increasingly recognized and studied. Here, we review the knowledge regarding the effect of production and storage conditions of pRBCs and platelet concentrates on the release of EVs. In this context, the mode of processing and anticoagulation, the influence of additive solutions and leukoreduction, as well as the storage duration will be addressed, and we discuss potential implications of EVs for the clinical outcome of transfusion.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Michael B Fischer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria; Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria.
| |
Collapse
|
9
|
Himcinschi ME, Uscatescu V, Gherghe G, Stoian I, Vlad A, Popa DC, Coriu D, Anghel A. The Role of Neutrophil Extracellular Traps in the Outcome of Malignant Epitheliomas: Significance of CA215 Involvement. Diagnostics (Basel) 2024; 14:328. [PMID: 38337844 PMCID: PMC10855654 DOI: 10.3390/diagnostics14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Neutrophil extracellular traps (NETs) were originally discovered as a part of the innate immune response of the host to bacteria. They form a web-like structure that can immobilize microorganisms or exhibit direct antimicrobial properties, such as releasing reactive oxygen species (ROS). NETs are established when neutrophils undergo a sort of cellular death following exposure to ROS, chemokines, cytokines, or other soluble factors. This process results in the release of the neutrophil's DNA in a web-like form, which is decorated with citrullinated histones (H3/H4-cit), neutrophil elastase (NE), and myeloperoxidase (MPO). Emerging studies have put into perspective that NETs play an important role in oncology as they were shown to influence tumor growth, malignant initiation, and proliferation, mediate the transition from endothelial to mesenchymal tissue, stimulate angiogenesis or metastasis, and can even help cancer cells evade the immune response. The role of NETs in cancer therapy resides in their ability to form and act as a mechanical barrier that will provide the primary tumor with a reduced response to irradiation or pharmaceutical penetration. Subsequently, cancer cells are shown to internalize NETs and use them as a strong antioxidant when pharmaceutical treatment is administered. In this review, we explored the role of NETs as part of the tumor microenvironment (TME), in the context of malignant epitheliomas, which are capable of an autonomous production of CA215, a subvariant of IgG, and part of the carcinoembryonic antigen (CEA) superfamily. Studies have shown that CA215 has a functional Fc subdivision able to activate the Fc-gamma-RS receptor on the surface of neutrophils. This activation may afterward stimulate the production of NETs, thus indicating CA215 as a potential factor in cancer therapy surveillance.
Collapse
Affiliation(s)
- Mihai Emanuel Himcinschi
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.E.H.); (A.A.)
| | - Valentina Uscatescu
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Georgiana Gherghe
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Irina Stoian
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Delia Codruța Popa
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Daniel Coriu
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Andrei Anghel
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.E.H.); (A.A.)
| |
Collapse
|