1
|
Zhao Z, Wang Y, Kang Y, Wu G, He J, Wang Z, Yang J, Wang Y, Yang X, Jia W. A retrospective study of the detection of sepsis pathogens comparing blood culture and culture-independent digital PCR. Heliyon 2024; 10:e27523. [PMID: 38510040 PMCID: PMC10951527 DOI: 10.1016/j.heliyon.2024.e27523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Fast and precise identification of microorganisms in the early diagnosis of sepsis is crucial for enhancing patient outcomes. Digital PCR (dPCR) is a highly sensitive approach for absolute quantification that can be utilized as a culture-independent molecular technique for diagnosing sepsis pathogens. We performed a retrospective investigation on 69 ICU patients suspected of sepsis. Our findings showed that a multiplex dPCR diagnostic kit outperformed blood culture in detecting the 15 most frequent bacteria that cause sepsis. Ninety-two bacterial strains were identified using dPCR at concentrations varying from 34 copies/mL to 105,800 copies/mL. The detection rate of dPCR was much greater than that of BC, with 27.53% (19/69) versus 73.91% (51/69). The sensitivity of dPCR was 63.2%. Our research indicated that dPCR outperforms blood culture in the early detection of sepsis-causing microorganisms. The diagnostic kit can detect a greater variety of pathogens with quantitative data, including polymicrobial infections, and has a quicker processing time. DPCR is a valuable technique that could aid in the proper management of sepsis.
Collapse
Affiliation(s)
- Zhijun Zhao
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Yinchuan, China
| | - Yixuan Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Yinchuan, China
| | - Yuting Kang
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Yinchuan, China
| | - Geng Wu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jing He
- Department of Research and Development, Rainsure Scientific Co. Ltd., Suzhou, China
| | - Zhanying Wang
- Department of Research and Development, Rainsure Scientific Co. Ltd., Suzhou, China
| | - Ju Yang
- Department of Research and Development, Rainsure Scientific Co. Ltd., Suzhou, China
| | - Yaqi Wang
- Department of Research and Development, Rainsure Scientific Co. Ltd., Suzhou, China
| | - Xiaojun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Jia
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Yinchuan, China
| |
Collapse
|
2
|
Validation of a Metagenomic Next-Generation Sequencing Assay for Lower Respiratory Pathogen Detection. Microbiol Spectr 2023; 11:e0381222. [PMID: 36507666 PMCID: PMC9927246 DOI: 10.1128/spectrum.03812-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lower respiratory infection (LRI) is the most fatal communicable disease, with only a few pathogens identified. Metagenomic next-generation sequencing (mNGS), as an unbiased, hypothesis-free, and culture-independent method, theoretically enables the detection of all pathogens in a single test. In this study, we developed and validated a DNA-based mNGS method for the diagnosis of LRIs from bronchoalveolar lavage fluid (BALF). We prepared simulated in silico data sets and published raw data sets from patients to evaluate the performance of our in-house bioinformatics pipeline and compared it with the popular metagenomics pipeline Kraken2-Bracken. In addition, a series of biological microbial communities were used to comprehensively validate the performance of our mNGS assay. Sixty-nine clinical BALF samples were used for clinical validation to determine the accuracy. The in-house bioinformatics pipeline validation showed a recall of 88.03%, precision of 99.14%, and F1 score of 92.26% via single-genome simulated data. Mock in silico microbial community and clinical metagenomic data showed that the in-house pipeline has a stricter cutoff value than Kraken2-Bracken, which could prevent false-positive detection by the bioinformatics pipeline. The validation for the whole mNGS pipeline revealed that overwhelming human DNA, long-term storage at 4°C, and repeated freezing-thawing reduced the analytical sensitivity of the assay. The mNGS assay showed a sensitivity of 95.18% and specificity of 91.30% for pathogen detection from BALF samples. This study comprehensively demonstrated the analytical performance of this laboratory-developed mNGS assay for pathogen detection from BALF, which contributed to the standardization of this technology. IMPORTANCE To our knowledge, this study is the first to comprehensively validate the mNGS assay for the diagnosis of LRIs from BALF. This study exhibited a ready-made example for clinical laboratories to prepare reference materials and develop comprehensive validation schemes for their in-house mNGS assays, which would accelerate the standardization of mNGS testing.
Collapse
|
3
|
Dhital R, Shen Z, Zhang S, Mustapha A. Detection of virulence and extended spectrum β-lactamase genes in Salmonella by multiplex high-resolution melt curve real-time PCR assay. J Appl Microbiol 2021; 132:2355-2367. [PMID: 34689400 DOI: 10.1111/jam.15334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
AIMS Develop and standardize multiplex high-resolution melt curve (HRM) real-time PCR assays for simultaneous detection of Salmonella virulence and extended spectrum β-lactamase (ESBL) genes in food. METHODS AND RESULTS Two sets of multiplex real-time PCR assays targeting six virulence and three ESBL genes with internal amplification control were standardized. The first assay detected hilA, fimH, sipA, blaTEM and blaSHV, and the second detected invA, fimA, stn and blaCMY . The PCR assays were validated with DNA samples from 77 different Salmonella strains. The assay specificity was tested with DNA from 47 non-Salmonella strains. Melt curve analyses showed distinct, well-separated melting peaks of each target gene detected by their respective melting temperatures (Tm ). Different food samples were spiked with 10, 102 and 103 CFU/ml of Salmonella. The optimized assays were able to detect all target genes in concentrations of as low as 10 CFU/ml in 25 g foods within 10 h of enrichment. CONCLUSIONS Multiplex HRM real-time PCR assays can be used as rapid detection methods for detecting Salmonella in foods. SIGNIFICANCE AND IMPACT OF STUDY The assays developed in this study will allow for accurate detection of virulence and ESBL genes in Salmonella that are present in low concentrations in food samples.
Collapse
Affiliation(s)
- Rajiv Dhital
- Food Science Program, University of Missouri, Columbia, Missouri, USA
| | - Zhenyu Shen
- Veterinary Diagnostic Laboratory, University of Missouri, Columbia, Missouri, USA
| | - Shuping Zhang
- Veterinary Diagnostic Laboratory, University of Missouri, Columbia, Missouri, USA
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Bacterial cell recovery after hollow fiber microfiltration sample concentration: Most probable bacterial composition in frozen vegetables. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Chen CY, Nguyen LHT, Paoli GC, Irwin PL. The complex multicellular morphology of the food spoilage bacteria Brochothrix thermosphacta strains isolated from ground chicken. Can J Microbiol 2020; 66:303-312. [DOI: 10.1139/cjm-2019-0502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein we describe a highly structured, filamentous growth phenotype displayed by an isolate of the food spoilage microorganism Brochothrix thermosphacta. The growth morphology of this B. thermosphacta strain (strain BII) was dependent on environmental factors such as the growth media, incubation temperatures, and the inoculum concentration. Inoculation of cultures in highly dilute suspensions resulted in the formation of isolated, tight aggregates resembling fungal growth in liquid media. This same strain also formed stable, mesh-like structures in 6-well tissue culture plates under specific growth conditions. The complex growth phenotype does not appear to be unique to strain BII but was common among B. thermosphacta strains isolated from chicken. Light and electron micrographs showed that the filaments of multiple BII cells can organize into complex, tertiary structures resembling multistranded cables. Time-lapse microscopy was employed to monitor the development of such aggregates over 18 h and revealed growth originating from short filaments into compact ball-like clusters that appeared fuzzy due to protruding filaments or cables. This report is the first to document this complex filamentous growth phenotype in a wild-type bacterial isolate of B. thermosphacta.
Collapse
Affiliation(s)
- Chin-Yi Chen
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Ly-Huong T. Nguyen
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - George C. Paoli
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Peter L. Irwin
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center Molecular Characterization of Foodborne Pathogens Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
6
|
Deshpande SV, Reed TM, Sullivan RF, Kerkhof LJ, Beigel KM, Wade MM. Offline Next Generation Metagenomics Sequence Analysis Using MinION Detection Software (MINDS). Genes (Basel) 2019; 10:genes10080578. [PMID: 31366182 PMCID: PMC6723491 DOI: 10.3390/genes10080578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Field laboratories interested in using the MinION often need the internet to perform sample analysis. Thus, the lack of internet connectivity in resource-limited or remote locations renders downstream analysis problematic, resulting in a lack of sample identification in the field. Due to this dependency, field samples are generally transported back to the lab for analysis where internet availability for downstream analysis is available. These logistics problems and the time lost in sample characterization and identification, pose a significant problem for field scientists. To address this limitation, we have developed a stand-alone data analysis packet using open source tools developed by the Nanopore community that does not depend on internet availability. Like Oxford Nanopore Technologies’ (ONT) cloud-based What’s In My Pot (WIMP) software, we developed the offline MinION Detection Software (MINDS) based on the Centrifuge classification engine for rapid species identification. Several online bioinformatics applications have been developed surrounding ONT’s framework for analysis of long reads. We have developed and evaluated an offline real time classification application pipeline using open source tools developed by the Nanopore community that does not depend on internet availability. Our application has been tested on ATCC’s 20 strain even mix whole cell (ATCC MSA-2002) sample. Using the Rapid Sequencing Kit (SQK-RAD004), we were able to identify all 20 organisms at species level. The analysis was performed in 15 min using a Dell Precision 7720 laptop. Our offline downstream bioinformatics application provides a cost-effective option as well as quick turn-around time when analyzing samples in the field, thus enabling researchers to fully utilize ONT’s MinION portability, ease-of-use, and identification capability in remote locations.
Collapse
Affiliation(s)
- Samir V Deshpande
- Science and Technology Corporation, 111 Bata Blvd, Suite C, Belcamp, MD 21017, USA
| | - Timothy M Reed
- US Army, 20th CBRNE, Aberdeen Proving Ground, MD 21010, USA
| | - Raymond F Sullivan
- US Army, CCDC-Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ 08901-8521, USA
| | - Keith M Beigel
- US Army, 20th CBRNE, Aberdeen Proving Ground, MD 21010, USA.
| | - Mary M Wade
- US Army, CCDC-Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA.
| |
Collapse
|
7
|
Complete Genome Sequences of Two Strains of the Meat Spoilage Bacterium Brochothrix thermosphacta Isolated from Ground Chicken. GENOME ANNOUNCEMENTS 2017; 5:5/47/e01357-17. [PMID: 29167264 PMCID: PMC5701489 DOI: 10.1128/genomea.01357-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT) technology and are the first complete genome sequences reported for B. thermosphacta.
Collapse
|
8
|
Mojarro A, Ruvkun G, Zuber MT, Carr CE. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection. ASTROBIOLOGY 2017; 17:747-760. [PMID: 28704064 PMCID: PMC5567878 DOI: 10.1089/ast.2016.1535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Smith CR, Blair PL, Boyd C, Cody B, Hazel A, Hedrick A, Kathuria H, Khurana P, Kramer B, Muterspaw K, Peck C, Sells E, Skinner J, Tegeler C, Wolfe Z. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 2016; 6:8075-8084. [PMID: 27878079 PMCID: PMC5108259 DOI: 10.1002/ece3.2553] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no‐till, had a much greater impact on nearly everything measured compared to the crop planted. No‐till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no‐till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff—both of which have ecosystem‐level effects and both direct and indirect effects on humans and other organisms.
Collapse
Affiliation(s)
- Chris R Smith
- Department of Biology Earlham College Richmond IN USA
| | - Peter L Blair
- Department of Biology Earlham College Richmond IN USA
| | - Charlie Boyd
- Department of Biology Earlham College Richmond IN USA
| | - Brianne Cody
- Department of Biology Earlham College Richmond IN USA
| | - Alexander Hazel
- Department of Biology Earlham College Richmond IN USA; Present address: Department of Entomology University of Illinois Urbana Champaign IL USA
| | | | - Hitesh Kathuria
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Parul Khurana
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Brent Kramer
- Department of Biology Earlham College Richmond IN USA
| | | | - Charles Peck
- Department of Computer Science Earlham College Richmond IN USA
| | - Emily Sells
- Department of Biology Earlham College Richmond IN USA
| | - Jessica Skinner
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Cara Tegeler
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Zoe Wolfe
- Department of Biology Earlham College Richmond IN USA
| |
Collapse
|