1
|
Sun Y, Guo S, Yang J, Li Y, Sun Z, Kwok LY, Sun T, Liu W, Liu W. The Space Environment Activates Capsular Polysaccharide Production in Lacticaseibacillus rhamnosus Probio-M9 by Mutating the wze ( ywqD) Gene. Microbiol Spectr 2023; 11:e0467722. [PMID: 36861974 PMCID: PMC10101077 DOI: 10.1128/spectrum.04677-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The study of microorganisms in outer space has focused mainly on investigating phenotypic changes in microbial pathogens induced by factors encountered in space. This study aimed to investigate the effect of space exposure on a probiotic bacterium, Lacticaseibacillus rhamnosus Probio-M9. Probio-M9 cells were exposed to space in a spaceflight. Interestingly, our results showed that a substantial proportion of space-exposed mutants (35/100) exhibited a ropy phenotype, characterized by their larger colony sizes and an acquired ability to produce capsular polysaccharide (CPS), compared with the original Probio-M9 or the ground control isolates without space exposure. Whole-genome sequencing analyses on both the Illumina and PacBio platforms revealed a skewed distribution of single nucleotide polymorphisms (12/89 [13.5%]) toward the CPS gene cluster, particularly in the wze (ywqD) gene. The wze gene encodes a putative tyrosine-protein kinase that regulates CPS expression through substrate phosphorylation. Transcriptomics analysis of two space-exposed ropy mutants revealed increased expression in the wze gene relative to a ground control isolate. Finally, we showed that the acquired ropy phenotype (CPS-producing ability) and space-induced genomic changes could be stably inherited. Our findings confirmed that the wze gene directly influences the capacity for CPS production in Probio-M9, and space mutagenesis is a potential strategy for inducing stable physiological changes in probiotics. IMPORTANCE This work investigated the effect of space exposure on a probiotic bacterium, Lacticaseibacillus rhamnosus Probio-M9. Interestingly, the space-exposed bacteria became capable of producing capsular polysaccharide (CPS). Some probiotic-derived CPSs have nutraceutical potential and bioactive properties. They also enhance the survival of probiotics through the gastrointestinal transit and ultimately strengthen the probiotic effects. Space mutagenesis seems to be a promising strategy for inducing stable changes in probiotics, and the obtained high-CPS-yielding mutants are valuable resources for future applications.
Collapse
Affiliation(s)
- Yue Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuai Guo
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Jingfang Yang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yingmeng Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, People’s Republic of China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, People’s Republic of China
| | - Wenjun Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
3
|
Kwon YW, Bae JH, Kim SA, Han NS. Development of Freeze-Thaw Tolerant Lactobacillus rhamnosus GG by Adaptive Laboratory Evolution. Front Microbiol 2018; 9:2781. [PMID: 30524399 PMCID: PMC6256098 DOI: 10.3389/fmicb.2018.02781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
The industrial application of microorganisms as starters or probiotics requires their preservation to assure viability and metabolic activity. Freezing is routinely used for this purpose, but the cold damage caused by ice crystal formation may result in severe decrease in microbial activity. In this study, adaptive laboratory evolution (ALE) technique was applied to a lactic acid bacterium to select tolerant strains against freezing and thawing stresses. Lactobacillus rhamnosus GG was subjected to freeze-thaw-growth (FTG) for 150 cycles with four replicates. After 150 cycles, FTG-evolved mutants showed improved fitness (survival rates), faster growth rate, and shortened lag phase than those of the ancestor. Genome sequencing analysis of two evolved mutants showed genetic variants at distant loci in six genes and one intergenic space. Loss-of-function mutations were thought to alter the structure of the microbial cell membrane (one insertion in cls), peptidoglycan (two missense mutations in dacA and murQ), and capsular polysaccharides (one missense mutation in wze), resulting in an increase in cellular fluidity. Consequently, L. rhamnosus GG was successfully evolved into stress-tolerant mutants using FTG-ALE in a concerted mode at distal loci of DNA. This study reports for the first time the functioning of dacA and murQ in freeze-thaw sensitivity of cells and demonstrates that simple treatment of ALE designed appropriately can lead to an intelligent genetic changes at multiple target genes in the host microbial cell.
Collapse
Affiliation(s)
- Ye Won Kwon
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jae-Han Bae
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|