1
|
Fawaz R, Bingham C, Nayebi H, Chiou J, Gilbert L, Park SH, Geiger JH. The Structure of Maltooctaose-Bound Escherichia coli Branching Enzyme Suggests a Mechanism for Donor Chain Specificity. Molecules 2023; 28:molecules28114377. [PMID: 37298853 DOI: 10.3390/molecules28114377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Glycogen is the primary storage polysaccharide in bacteria and animals. It is a glucose polymer linked by α-1,4 glucose linkages and branched via α-1,6-linkages, with the latter reaction catalyzed by branching enzymes. Both the length and dispensation of these branches are critical in defining the structure, density, and relative bioavailability of the storage polysaccharide. Key to this is the specificity of branching enzymes because they define branch length. Herein, we report the crystal structure of the maltooctaose-bound branching enzyme from the enterobacteria E. coli. The structure identifies three new malto-oligosaccharide binding sites and confirms oligosaccharide binding in seven others, bringing the total number of oligosaccharide binding sites to twelve. In addition, the structure shows distinctly different binding in previously identified site I, with a substantially longer glucan chain ordered in the binding site. Using the donor oligosaccharide chain-bound Cyanothece branching enzyme structure as a guide, binding site I was identified as the likely binding surface for the extended donor chains that the E. coli branching enzyme is known to transfer. Furthermore, the structure suggests that analogous loops in branching enzymes from a diversity of organisms are responsible for branch chain length specificity. Together, these results suggest a possible mechanism for transfer chain specificity involving some of these surface binding sites.
Collapse
Affiliation(s)
- Remie Fawaz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney Bingham
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Hadi Nayebi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Janice Chiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Gilbert
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Hoon Park
- Department of Food Service Management and Nutrition, College of Natural Sciences, Sangmyung University, Hongjidong, Jongnogu, Seoul 03016, Republic of Korea
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Li F, Wang MM, Liu QH, Ma ZW, Wang JJ, Wang ZY, Tang JW, Lyu JW, Zhu ZB, Wang L. Molecular mechanisms of glycogen particle assembly in Escherichia coli. Carbohydr Polym 2023; 299:120200. [PMID: 36876811 DOI: 10.1016/j.carbpol.2022.120200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
It has been reported that glycogen in Escherichia coli has two structural states, that is, fragility and stability, which alters dynamically. However, molecular mechanisms behind the structural alterations are not fully understood. In this study, we focused on the potential roles of two important glycogen degradation enzymes, glycogen phosphorylase (glgP) and glycogen debranching enzyme (glgX), in glycogen structural alterations. The fine molecular structure of glycogen particles in Escherichia coli and three mutants (ΔglgP, ΔglgX and ΔglgP/ΔglgX) were examined, which showed that glycogen in E. coli ΔglgP and E. coli ΔglgP/ΔglgX were consistently fragile while being consistently stable in E. coli ΔglgX, indicating the dominant role of GP in glycogen structural stability control. In sum, our study concludes that glycogen phosphorylase is essential in glycogen structural stability, leading to molecular insights into structural assembly of glycogen particles in E. coli.
Collapse
Affiliation(s)
- Fen Li
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Meng-Meng Wang
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jun-Jiao Wang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zi-Yi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Wen Lyu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Zuo-Bin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Ye X, Liu W, Liao Y, Liu T, Zhao Y, Wang Y, Zhang Y, Li X, Xia C, Fang X, Huang Y, Li Z, Cui Z, Wang F. Glycogen Branching Enzyme with a Novel Chain Transfer Mode Derived from Corallococcus sp. Strain EGB and Its Potential Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4735-4748. [PMID: 35404056 DOI: 10.1021/acs.jafc.2c01621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary starch with an increased content of resistant starch (RS) has the potential to reduce the prevalence of diabetes, obesity, and cardiovascular diseases. Here, an efficient glycogen branching enzyme, CcGBE, from Corallococcus sp. strain EGB was identified, and its relevant properties, including potential application in the preparation of modified starch, were evaluated. The purified CcGBE exhibited a maximal specific activity of approximately 20,000 U/mg using cassava starch as the optimal substrate. The content of α-1,6-glucosidic bonds in CcGBE-modified cassava starch increased from 2.9 to 13.2%. Meanwhile, both the average chain length (CL) of CcGBE-modified starch and the blue value of the color complex formed by starch and iodine initially increased and then decreased, indicating that a new CL transfer mode was reported. Perforated small starch granules were released after CcGBE treatment, and a time-dependent decrease in the retrogradation enthalpy (ΔHr) of cassava starch indicated that CcGBE inhibited the long-term retrogradation of starch. Moreover, the RS content and cold water solubility (CWS) of CcGBE-modified starch increased from 3.3 to 12.8% and from 23.1 to 93.8%, respectively. These findings indicate the application potential of CcGBE for the preparation of modified starch with increased RS and CWS.
Collapse
Affiliation(s)
- Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqi Liao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Company Limited, Guangzhou 510000, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Li F, Xiong XS, Yang YY, Wang JJ, Wang MM, Tang JW, Liu QH, Wang L, Gu B. Effects of NaCl Concentrations on Growth Patterns, Phenotypes Associated With Virulence, and Energy Metabolism in Escherichia coli BW25113. Front Microbiol 2021; 12:705326. [PMID: 34484145 PMCID: PMC8415458 DOI: 10.3389/fmicb.2021.705326] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
According to the sit-and-wait hypothesis, long-term environmental survival is positively correlated with increased bacterial pathogenicity because high durability reduces the dependence of transmission on host mobility. Many indirectly transmitted bacterial pathogens, such as Mycobacterium tuberculosis and Burkhoderia pseudomallei, have high durability in the external environment and are highly virulent. It is possible that abiotic stresses may activate certain pathways or the expressions of certain genes, which might contribute to bacterial durability and virulence, synergistically. Therefore, exploring how bacterial phenotypes change in response to environmental stresses is important for understanding their potentials in host infections. In this study, we investigated the effects of different concentrations of salt (sodium chloride, NaCl), on survival ability, phenotypes associated with virulence, and energy metabolism of the lab strain Escherichia coli BW25113. In particular, we investigated how NaCl concentrations influenced growth patterns, biofilm formation, oxidative stress resistance, and motile ability. In terms of energy metabolism that is central to bacterial survival, glucose consumption, glycogen accumulation, and trehalose content were measured in order to understand their roles in dealing with the fluctuation of osmolarity. According to the results, trehalose is preferred than glycogen at high NaCl concentration. In order to dissect the molecular mechanisms of NaCl effects on trehalose metabolism, we further checked how the impairment of trehalose synthesis pathway (otsBA operon) via single-gene mutants influenced E. coli durability and virulence under salt stress. After that, we compared the transcriptomes of E. coli cultured at different NaCl concentrations, through which differentially expressed genes (DEGs) and differential pathways with statistical significance were identified, which provided molecular insights into E. coli responses to NaCl concentrations. In sum, this study explored the in vitro effects of NaCl concentrations on E. coli from a variety of aspects and aimed to facilitate our understanding of bacterial physiological changes under salt stress, which might help clarify the linkages between bacterial durability and virulence outside hosts under environmental stresses.
Collapse
Affiliation(s)
- Fen Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, China
| | - Xue-Song Xiong
- Medical Technology School of Xuzhou Medical University, Xuzhou, China
| | - Ying-Ying Yang
- School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jun-Jiao Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Liu QH, Tang JW, Wen PB, Wang MM, Zhang X, Wang L. From Prokaryotes to Eukaryotes: Insights Into the Molecular Structure of Glycogen Particles. Front Mol Biosci 2021; 8:673315. [PMID: 33996916 PMCID: PMC8116748 DOI: 10.3389/fmolb.2021.673315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glycogen is a highly-branched polysaccharide that is widely distributed across the three life domains. It has versatile functions in physiological activities such as energy reserve, osmotic regulation, blood glucose homeostasis, and pH maintenance. Recent research also confirms that glycogen plays important roles in longevity and cognition. Intrinsically, glycogen function is determined by its structure that has been intensively studied for many years. The recent association of glycogen α-particle fragility with diabetic conditions further strengthens the importance of glycogen structure in its function. By using improved glycogen extraction procedures and a series of advanced analytical techniques, the fine molecular structure of glycogen particles in human beings and several model organisms such as Escherichia coli, Caenorhabditis elegans, Mus musculus, and Rat rattus have been characterized. However, there are still many unknowns about the assembly mechanisms of glycogen particles, the dynamic changes of glycogen structures, and the composition of glycogen associated proteins (glycogen proteome). In this review, we explored the recent progresses in glycogen studies with a focus on the structure of glycogen particles, which may not only provide insights into glycogen functions, but also facilitate the discovery of novel drug targets for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Colpaert M, Kadouche D, Ducatez M, Pillonel T, Kebbi-Beghdadi C, Cenci U, Huang B, Chabi M, Maes E, Coddeville B, Couderc L, Touzet H, Bray F, Tirtiaux C, Ball S, Greub G, Colleoni C. Conservation of the glycogen metabolism pathway underlines a pivotal function of storage polysaccharides in Chlamydiae. Commun Biol 2021; 4:296. [PMID: 33674787 PMCID: PMC7935935 DOI: 10.1038/s42003-021-01794-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.
Collapse
Affiliation(s)
- Matthieu Colpaert
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Derifa Kadouche
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Mathieu Ducatez
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Ugo Cenci
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Binquan Huang
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/School of Agriculture, Yunnan University, Kunming, China
| | - Malika Chabi
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Emmanuel Maes
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Bernadette Coddeville
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Loïc Couderc
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Hélène Touzet
- University of Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France
| | - Fabrice Bray
- University of Lille, CNRS, USR 3290-MSAP-Miniaturisation pour la Synthèse, l'Analyse et la Protéomique, Lille, France
| | - Catherine Tirtiaux
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steven Ball
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Christophe Colleoni
- University of Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
7
|
Wang M, Liu Q, Kang X, Zhu Z, Yang H, Xi X, Zhang X, Du Y, Guo M, Tang D, Wang L. Glycogen Metabolism Impairment via Single Gene Mutation in the glgBXCAP Operon Alters the Survival Rate of Escherichia coli Under Various Environmental Stresses. Front Microbiol 2020; 11:588099. [PMID: 33101261 PMCID: PMC7546213 DOI: 10.3389/fmicb.2020.588099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Glycogen is a highly branched polysaccharide that is widely present in all life domains. It has been identified in many bacterial species and functions as an important energy storage compound. In addition, it plays important roles in bacterial transmission, pathogenicity, and environmental viability. There are five essential enzymes (coding genes) directly involved in bacterial glycogen metabolism, which forms a single operon glgBXCAP with a suboperonic promoter in glgC gene in Escherichia coli. Currently, there is no comparative study of how the disruptions of the five glycogen metabolism genes influence bacterial phenotypes, such as growth rate, biofilm formation, and environmental survival, etc. In this study, we systematically and comparatively studied five E. coli single-gene mutants (ΔglgC, ΔglgA, ΔglgB, ΔglgP, ΔglgX) in terms of glycogen metabolism and explored their phenotype changes with a focus on environmental stress endurance, such as nutrient deprivation, low temperature, desiccation, and oxidation, etc. Biofilm formation in wild-type and mutant strains was also compared. E. coli wild-type stores the highest glycogen content after around 20-h culture while disruption of degradation genes (glgP, glgX) leads to continuous accumulation of glycogen. However, glycogen primary structure was abnormally changed in ΔglgP and ΔglgX. Meanwhile, increased accumulation of glycogen facilitates the growth of E. coli mutants but reduces glucose consumption in liquid culture and vice versa. Glycogen metabolism disruption also significantly and consistently increases biofilm formation in all the mutants. As for environmental stress endurance, glycogen over-accumulating mutants have enhanced starvation viability and reduced desiccation viability while all mutants showed decreased survival rate at low temperature. No consistent results were found for oxidative stress resistance in terms of glycogen metabolism disruptions, though ΔglgA shows highest resistance toward oxidation with unknown mechanisms. In sum, single gene disruptions in glgBXCAP operon significantly influence bacterial growth and glucose consumption during culture. Accumulation and structure of intracellular glycogen were also significantly altered. In addition, we observed significant changes in E. coli environmental viabilities due to the deletions of certain genes in the operon. Further investigations shall be focused on the molecular mechanisms behind these phenotype changes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xingxing Kang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- School of Laboratory Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Xi
- Xuzhou Infectious Disease Hospital, Xuzhou, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Bacterial Glycogen Provides Short-Term Benefits in Changing Environments. Appl Environ Microbiol 2020; 86:AEM.00049-20. [PMID: 32111592 DOI: 10.1128/aem.00049-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/26/2020] [Indexed: 11/20/2022] Open
Abstract
Changing nutritional conditions challenge microbes and shape their evolutionary optimization. Here, we used real-time metabolomics to investigate the role of glycogen in the dynamic physiological adaptation of Escherichia coli to fluctuating nutrients following carbon starvation. After the depletion of environmental glucose, we found significant metabolic activity remaining, which was linked to rapid utilization of intracellular glycogen. Glycogen was depleted by 80% within minutes of glucose starvation and was similarly replenished within minutes of glucose availability. These fast time scales of glycogen utilization correspond to the short-term benefits that glycogen provided to cells undergoing various physiological transitions. Cells capable of utilizing glycogen exhibited shorter lag times than glycogen mutants when starved between periods of exposure to different carbon sources. The ability to utilize glycogen was also important for the transition between planktonic and biofilm lifestyles and enabled increased glucose uptake during pulses of limited glucose availability. While wild-type and mutant strains exhibited comparable growth rates in steady environments, mutants deficient in glycogen utilization grew more poorly in environments that fluctuated on minute scales between carbon availability and starvation. Taken together, these results highlight an underappreciated role of glycogen in rapidly providing carbon and energy in changing environments, thereby increasing survival and competition capabilities under fluctuating and nutrient-poor conditions.IMPORTANCE Nothing is constant in life, and microbes in particular have to adapt to frequent and rapid environmental changes. Here, we used real-time metabolomics and single-cell imaging to demonstrate that the internal storage polymer glycogen plays a crucial role in such dynamic adaptations. Glycogen is depleted within minutes of glucose starvation and similarly is replenished within minutes of glucose availability. Cells capable of utilizing glycogen exhibited shorter lag times than glycogen mutants when starved between periods of exposure to different carbon sources. While wild-type and mutant strains exhibited comparable growth rates in steady environments, mutants deficient in glycogen utilization grew more poorly in environments that fluctuated on minute scales between carbon availability and starvation. These results highlight an underappreciated role of glycogen in rapidly providing carbon and energy in changing environments, thereby increasing survival and competition capabilities under fluctuating and nutrient-poor conditions.
Collapse
|
9
|
Wang L, Liu Q, Wang M, Du Y, Tan X, Xu B, Cheung U, Li E, Gilbert RG, Tang D. Effects of fasting on liver glycogen structure in rats with type 2 diabetes. Carbohydr Polym 2020; 237:116144. [PMID: 32241436 DOI: 10.1016/j.carbpol.2020.116144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
Abstract
Liver glycogen, a highly branched glucose polymer, is important for blood sugar homeostasis. It comprises α particles which are made of linked β particles; the molecular structure changes diurnally. In diabetic liver, the α particles are fragile, easily breaking apart into β particles in chaotropic agents such as dimethyl sulfoxide. We here use size-exclusion chromatography to study how fasting changes liver-glycogen structure in vivo for mice in which type-2 diabetes had previously been induced. Diabetic glycogen degraded enzymatically more quickly in the fasted animals than did glycogen without fasting, with fewer α particles, which however were still fragile. The glycogen had fewer long chains and more shorter chains after fasting. This study gives an overview of the in vivo dynamic changes in α-particles under starvation conditions in both normal and diabetic livers.
Collapse
Affiliation(s)
- Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China; Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xinle Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bingju Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Ut Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Robert G Gilbert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
10
|
Wang L, Wang M, Wise MJ, Liu Q, Yang T, Zhu Z, Li C, Tan X, Tang D, Wang W. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J Microbiol Biotechnol 2020; 36:14. [PMID: 31897771 DOI: 10.1007/s11274-019-2795-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Glycogen is conventionally considered as a transient energy reserve that can be rapidly synthesized for glucose accumulation and mobilized for ATP production. However, this conception is not completely applicable to prokaryotes due to glycogen structural heterogeneity. A number of studies noticed that glycogen with small average chain length gc in bacteria has the potential to degrade slowly, which might prolong bacterial environment survival. This phenomenon was previously examined and later formulated as the durable energy storage mechanism hypothesis. Although recent research has been warming to the hypothesis, experimental validation is still missing at current stage. In this review, we summarized recent progress of the hypothesis, provided a supporting mathematical model, and explored the technical pitfalls that shall be avoided in glycogen study.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Michael J Wise
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, 6009, Australia
- Computer Science and Software Engineering, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Ting Yang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Chengcheng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinle Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Wei Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- The First Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, Guangdong, China
- School of Public Health, Taishan Medical University, Tai'an, 271000, Shandong, China
| |
Collapse
|
11
|
Wang L, Liu Q, Tan X, Wang Z, Wang M, Wise MJ, Li C, Ma C, Li E, Deng B, Du Y, Tang D, Gilbert RG. Molecular Structure of Glycogen in Escherichia coli. Biomacromolecules 2019; 20:2821-2829. [PMID: 31244022 DOI: 10.1021/acs.biomac.9b00586] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glycogen, a randomly branched glucose polymer, provides energy storage in organisms. It forms small β particles which in animals bind to form composite α particles, which give better glucose release. Simulations imply β particle size is controlled only by activities and sizes of glycogen biosynthetic enzymes and sizes of polymer chains. Thus, storing more glucose requires forming more β particles, which are expected to sometimes form α particles. No α particles have been reported in bacteria, but the extraction techniques might have caused degradation. Using milder glycogen extraction techniques on Escherichia coli, transmission electron microscopy and size-exclusion chromatography showed α particles, consistent with this hypothesis for α-particle formation. Molecular density and size distributions show similarities with animal glycogen, despite very different metabolic processes. These general polymer constraints are such that any organism which needs to store and then release glucose will have similar α and β particle structures: a type of convergent evolution.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China.,Jiangsu Provincial Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China
| | - Qinghua Liu
- Department of Bioinformatics, School of Medical Informatics , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China.,Department of Pharmaceutical Analysis, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China
| | - Xinle Tan
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , Queensland 4072 , Australia.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Ziyi Wang
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , Queensland 4072 , Australia.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Mengmeng Wang
- Jiangsu Provincial Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China.,Department of Pharmaceutical Analysis, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China
| | - Michael J Wise
- The Marshall Center for Infectious Diseases Research and Training, and Department of Computer Science and Software Engineering , University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Chengcheng Li
- School of Bioengineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , China
| | - Chao Ma
- Department of Bioinformatics, School of Medical Informatics , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture , Yangzhou University , Yangzhou 225009 , Jiangsu Province , China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , Hubei 430030 , China
| | - Yan Du
- Jiangsu Provincial Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China.,Department of Pharmaceutical Analysis, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China
| | - Daoquan Tang
- Jiangsu Provincial Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China.,Department of Pharmaceutical Analysis, School of Pharmacy , Xuzhou Medical University , Xuzhou 221000 , Jiangsu Province , China
| | - Robert G Gilbert
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , Queensland 4072 , Australia.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , Brisbane , Queensland 4072 , Australia.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture , Yangzhou University , Yangzhou 225009 , Jiangsu Province , China
| |
Collapse
|
12
|
Wang L, Liu Q, Hu J, Asenso J, Wise MJ, Wu X, Ma C, Chen X, Yang J, Tang D. Structure and Evolution of Glycogen Branching Enzyme N-Termini From Bacteria. Front Microbiol 2019; 9:3354. [PMID: 30692986 PMCID: PMC6339891 DOI: 10.3389/fmicb.2018.03354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023] Open
Abstract
In bacteria, glycogen plays important roles in carbon and energy storage. Its structure has recently been linked with bacterial environmental durability. Among the essential genes for bacterial glycogen metabolism, the glgB-encoded branching enzyme GBE plays an essential role in forming α-1,6-glycosidic branching points, and determines the unique branching patterns in glycogen. Previously, evolutionary analysis of a small sets of GBEs based on their N-terminal domain organization revealed that two types of GBEs might exist: (1) Type 1 GBE with both N1 and N2 (also known as CBM48) domains and (2) Type 2 GBE with only the N2 domain. In this study, we initially analyzed N-terminal domains of 169 manually reviewed bacterial GBEs based on hidden Markov models. A previously unreported group of GBEs (Type 3) with around 100 amino acids ahead of the N1 domains was identified. Phylogenetic analysis found clustered patterns of GBE types in certain bacterial phyla, with the shorter, Type 2 GBEs predominantly found in Gram-positive species, while the longer Type 1 GBEs are found in Gram-negative species. Several in vitro studies have linked N1 domain with transfer of short oligosaccharide chains during glycogen formation, which could lead to small and compact glycogen structures. Compact glycogen degrades more slowly and, as a result, may serve as a durable energy reserve, contributing to the enhanced environmental persistence for bacteria. We were therefore interested in classifying GBEs based on their N-terminal domain via large-scale sequence analysis. In addition, we set to understand the evolutionary patterns of different GBEs through phylogenetic analysis at species and sequence levels. Three-dimensional modeling of GBE N-termini was also performed for structural comparisons. A further study of 9,387 GBE sequences identified 147 GBEs that might belong to a possibly novel group of Type 3 GBE, most of which fall into the phylum of Actinobacteria. We also attempted to correlate glycogen average chain length (ACL) with GBE types. However, no significant conclusions were drawn due to limited data availability. In sum, our study systematically investigated bacterial GBEs in terms of domain organizations from evolutionary point of view, which provides guidance for further experimental study of GBE N-terminal functions in glycogen structure and bacterial physiology.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junfeng Hu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - James Asenso
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Michael J Wise
- Computer Science and Software Engineering, University of Western Australia, Perth, WA, Australia.,The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| | - Xiang Wu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Chao Ma
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Xiuqing Chen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Jianye Yang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Center for Experimental Animals, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|