1
|
Wang X, Wu Z, Xiang H, He Y, Zhu S, Zhang Z, Li X, Wang J. Whole genome analysis of Enterobacter cloacae Rs-2 and screening of genes related to plant-growth promotion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21548-21564. [PMID: 36272007 DOI: 10.1007/s11356-022-23564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The genus Enterobacter is widely recognized for its biotechnology potential in improving soil environment and crop growth promotion. To further explore these biotechnological potentials, we sequenced and analyzed the whole genome of Enterobacter cloacae Rs-2. The analysis showed that the total length of the Rs-2 genome was 6,965,070,514 bp, and GC content was 55.80%; the annotation results of GO and COG databases showed that the genome contains a variety of growth-promoting genes, such as iscU, glnA, glnB (nitrogen fixation); iucABCD (siderophore synthesis) and fepA, fcuA, fhuA, and pfeA, etc. (siderophore transport); ipdC (secreted IAA) and gcd, pqqBCDEF (dissolved phosphorus), etc. No pathogenic factors such as virulence genes were found. The application of Rs-2 as a soil inoculant in pot experiments showed great potential for growth promotion. This study proved the plant growth-promoting ability of Rs-2 at the molecular level through genetic screening and analysis, which provided guidance for the further improvement of the strain and laid a foundation for its application in agricultural production.
Collapse
Affiliation(s)
- Xiaobo Wang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zhansheng Wu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| | - Huichun Xiang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Yanhui He
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Shuangxi Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ziyan Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xueping Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Jianwen Wang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| |
Collapse
|
2
|
Genomic Analysis of Pseudomonas asiatica JP233: An Efficient Phosphate-Solubilizing Bacterium. Genes (Basel) 2022; 13:genes13122290. [PMID: 36553557 PMCID: PMC9777792 DOI: 10.3390/genes13122290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The bacterium Pseudomonas sp. strain JP233 has been reported to efficiently solubilize sparingly soluble inorganic phosphate, promote plant growth and significantly reduce phosphorus (P) leaching loss from soil. The production of 2-keto gluconic acid (2KGA) by strain JP233 was identified as the main active metabolite responsible for phosphate solubilization. However, the genetic basis of phosphate solubilization and plant-growth promotion remained unclear. As a result, the genome of JP233 was sequenced and analyzed in this study. The JP233 genome consists of a circular chromosome with a size of 5,617,746 bp and a GC content of 62.86%. No plasmids were detected in the genome. There were 5097 protein-coding sequences (CDSs) predicted in the genome. Phylogenetic analyses based on genomes of related Pseudomonas spp. identified strain JP233 as Pseudomonas asiatica. Comparative pangenomic analysis among 9 P. asiatica strains identified 4080 core gene clusters and 111 singleton genes present only in JP233. Genes associated with 2KGA production detected in strain JP233, included those encoding glucose dehydrogenase, pyrroloquinoline quinone and gluoconate dehydrogenase. Genes associated with mechanisms of plant-growth promotion and nutrient acquisition detected in JP233 included those involved in IAA biosynthesis, ethylene catabolism and siderophore production. Numerous genes associated with other properties beneficial to plant growth were also detected in JP233, included those involved in production of acetoin, 2,3-butanediol, trehalose, and resistance to heavy metals. This study provides the genetic basis to elucidate the plant-growth promoting and bio-remediation properties of strain JP233 and its potential applications in agriculture and industry.
Collapse
|
3
|
Mamet SD, Jimmo A, Conway A, Teymurazyan A, Talebitaher A, Papandreou Z, Chang YF, Shannon W, Peak D, Siciliano SD. Soil Buffering Capacity Can Be Used To Optimize Biostimulation of Psychrotrophic Hydrocarbon Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9864-9875. [PMID: 34170682 DOI: 10.1021/acs.est.1c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils. Here, we use PET to test two hypotheses: (1) optimizing phosphate bioavailability in soil will outperform a generic biostimulatory solution in promoting hydrocarbon remediation and (2) oligotrophic biostimulation will be more effective than eutrophic approaches. In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.
Collapse
Affiliation(s)
- Steven D Mamet
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Amy Jimmo
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Alexandra Conway
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Aram Teymurazyan
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Alizera Talebitaher
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zisis Papandreou
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yu-Fen Chang
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, Bergen 5063, Norway
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Whitney Shannon
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Derek Peak
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
4
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Zhang Y, Zhang Y, Li P, Wang Y, Wang J, Shao Z, Zhao G. GlnR positive transcriptional regulation of the phosphate-specific transport system pstSCAB in Amycolatopsis mediterranei U32. Acta Biochim Biophys Sin (Shanghai) 2018; 50:757-765. [PMID: 30007316 DOI: 10.1093/abbs/gmy073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/14/2022] Open
Abstract
Amycolatopsis mediterranei U32 is an important industrial strain for the production of rifamycin SV. Rifampicin, a derivative of rifamycin SV, is commonly used to treat mycobacterial infections. Although phosphate has long been known to affect rifamycin biosynthesis, phosphate transport, metabolism, and regulation are poorly understood in A. mediterranei. In this study, the functional phosphate transport system pstSCAB was isolated by RNA sequencing and inactivated by insertion mutation in A. mediterranei U32. The mycelium morphology changed from a filamentous shape in the wild-type and pstS1+ strains to irregular swollen shape at the end of filamentous in the ΔpstS1 strain. RT-PCR assay revealed that pstSCAB genes are co-transcribed as a polycistronic messenger. The pstSCAB transcription was significantly activated by nitrate supplementation and positively regulated by GlnR which is a global regulator of nitrogen metabolism in actinomycetes. At the same time, the yield of rifamycin SV decreased after mutation (ΔpstS1) compared with wild-type U32, which indicated a strong connection among phosphate metabolism, nitrogen metabolism, and rifamycin production in actinomycetes.
Collapse
Affiliation(s)
- Yuhui Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Department of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Li
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jin Wang
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihui Shao
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Mamet SD, Ma B, Ulrich A, Schryer A, Siciliano SD. Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P 18O 4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1773-1786. [PMID: 29378402 DOI: 10.1021/acs.est.7b05773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Aimée Schryer
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
7
|
Huang Q, Liang L, Wu W, Wu S, Huang J. Metabolic engineering of Corynebacterium glutamicum to enhance L-leucine production. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2017.15911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Leßmeier L, Alkhateeb RS, Schulte F, Steffens T, Loka TP, Pühler A, Niehaus K, Vorhölter FJ. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris. J Biotechnol 2016; 232:89-98. [DOI: 10.1016/j.jbiotec.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
|
9
|
Rees MA, Stinear TP, Goode RJA, Coppel RL, Smith AI, Kleifeld O. Changes in protein abundance are observed in bacterial isolates from a natural host. Front Cell Infect Microbiol 2015; 5:71. [PMID: 26528441 PMCID: PMC4604328 DOI: 10.3389/fcimb.2015.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022] Open
Abstract
Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterization of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the lymph nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins were identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.
Collapse
Affiliation(s)
- Megan A Rees
- Coppel Laboratory, Department of Microbiology, Monash University Clayton, VIC, Australia ; Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Timothy P Stinear
- Stinear Laboratory, Department of Microbiology and Immunology, University of Melbourne Parkville, VIC, Australia
| | - Robert J A Goode
- Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Ross L Coppel
- Coppel Laboratory, Department of Microbiology, Monash University Clayton, VIC, Australia
| | - Alexander I Smith
- Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Oded Kleifeld
- Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|