1
|
Ribeiro PDS, Stasko J, Shircliff A, Fernandes LG, Putz EJ, Andreasen C, Azevedo V, Ristow P, Nally JE. Investigations into the growth and formation of biofilm by Leptospira biflexa at temperatures encountered during infection. Biofilm 2025; 9:100243. [PMID: 39758814 PMCID: PMC11697785 DOI: 10.1016/j.bioflm.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The genus Leptospira comprises unique atypical spirochete bacteria that includes the etiological agent of leptospirosis, a globally important zoonosis. Biofilms are microecosystems composed of microorganisms embedded in a self-produced matrix that offers protection against hostile factors. Leptospires form biofilms in vitro, in situ in rice fields and unsanitary urban areas, and in vivo while colonizing rodent kidneys. The complex three-dimensional biofilm matrix includes secreted polymeric substances such as proteins, extracellular DNA (eDNA), and saccharides. The genus Leptospira comprises pathogenic and saprophytic species with the saprophytic L. biflexa being commonly used as a model organism for the genus. In this study, the growth and formation of biofilms by L. biflexa was investigated not just at 29 °C, but at 37 °C/5 % CO2, a temperature similar to that encountered during host infection. Planktonic free-living L. biflexa grow in HAN media at both 29 °C and 37 °C/5 % CO2, but cells grown at 37 °C/5 % CO2 are longer (18.52 μm ± 3.39) compared to those at 29 °C (13.93 μm ± 2.84). Biofilms formed at 37 °C/5 % CO2 had more biomass compared to 29 °C, as determined by crystal violet staining. Confocal microscopy determined that the protein content within the biofilm matrix was more prominent than double-stranded DNA, and featured a distinct layer attached to the solid substrate. Additionally, the model enabled effective protein extraction for proteomic comparison across different biofilm phenotypes. Results highlight an important role for proteins in biofilm matrix structure by leptospires and the identification of their specific protein components holds promise for strategies to mitigate biofilm formation.
Collapse
Affiliation(s)
- Priscyla dos Santos Ribeiro
- Federal University of Minas Gerais, Belo Horizonte, Brazil
- Federal University of Bahia, National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution, Salvador, Brazil
| | - Judith Stasko
- Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Adrienne Shircliff
- Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Luis Guilherme Fernandes
- Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Claire Andreasen
- Department of Veterinary Pathology, College of Veterinary Medicine, Ames, IA, USA
| | - Vasco Azevedo
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Ristow
- Federal University of Bahia, National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution, Salvador, Brazil
| | - Jarlath E. Nally
- Infectious Bacterial Diseases Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
2
|
Malviya J, Alameri AA, Al-Janabi SS, Fawzi OF, Azzawi AL, Obaid RF, Alsudani AA, Alkhayyat AS, Gupta J, Mustafa YF, Karampoor S, Mirzaei R. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J Microbiol Biotechnol 2023; 39:212. [PMID: 37256458 DOI: 10.1007/s11274-023-03651-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.
Collapse
Affiliation(s)
- Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | - Saif S Al-Janabi
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Iraq
| | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali A Alsudani
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Ameer S Alkhayyat
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U. P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Li J, Liu H, Wu P, Zhang C, Zhang J. Quorum sensing signals stimulate biofilm formation and its electroactivity for chain elongation: System performance and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160192. [PMID: 36395854 DOI: 10.1016/j.scitotenv.2022.160192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Quorum sensing signals have been widely explored in microbial communities. However, the impact of chain elongation microorganisms by quorum sensing signals of acyl homoserine lactones (AHLs) is still unclear. Here, chain elongation consortia under conditions of AHLs addition were examined in microbial electrosynthesis (MES) through 16S rRNA microbial community and metatranscriptomic analyses. The research found that N-octanoyl-L-homoserine lactone (C8-HSL) increased the caproate concentration by 61.48 % as relative to the control and showed the best performance among all the tested AHLs in MES. AHLs enhanced the redox activity of cathodic electroactive biofilms (EABs), which could be due to increased attachment of electrode microorganisms and ratios of live/dead cells. Microbial community analysis showed that AHLs increased the relative abundance of Negativicutes obviously. Meanwhile, metatranscriptomic analysis revealed that C8-HSL significantly improved CoA - transferase activity and regulated valine, leucine, isoleucine biosynthesis, and carbon metabolism. Besides, C8-HSL was beneficial to the chain elongation metabolic pathways, especially the fatty acid biosynthesis (FAB) pathway. These results not only provide metabolic insights into AHLs regulating chain elongation consortia, but also propose potential strategies for speeding up the formation of MES cathodic biofilm.
Collapse
Affiliation(s)
- Jing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu Province, PR China.
| | - Ping Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Jie Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| |
Collapse
|
4
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Torres-Díaz M, Abreu-Takemura C, Díaz-Vázquez LM. Microalgae Peptide-Stabilized Gold Nanoparticles as a Versatile Material for Biomedical Applications. Life (Basel) 2022; 12:life12060831. [PMID: 35743862 PMCID: PMC9224969 DOI: 10.3390/life12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae peptides have many medical and industrial applications due to their functional properties. However, the rapid degradation of peptides not naturally present in biological samples represents a challenge. A strategy to increase microalgae peptide stability in biological samples is to use carriers to protect the active peptide and regulate its release. This study explores the use of gold nanoparticles (AuNPs) as carriers of the Chlorella microalgae peptide (VECYGPNRPQF). The potential of these peptide biomolecules as stabilizing agents to improve the colloidal stability of AuNPs in physiological environments is also discussed. Spectroscopic (UV-VIS, DLS) and Microscopic (TEM) analyses confirmed that the employed modification method produced spherical AuNPs by an average 15 nm diameter. Successful peptide capping of AuNPs was confirmed with TEM images and FTIR spectroscopy. The stability of the microalgae peptide increased when immobilized into the AuNPs surface, as confirmed by the observed thermal shifts in DSC and high zeta-potential values in the colloidal solution. By optimizing the synthesis of AuNPs and tracking the conferred chemical properties as AuNPs were modified with the peptide via various alternative methods, the synthesis of an effective peptide-based coating system for AuNPs and drug carriers was achieved. The microalgae peptide AuNPs showed lower ecotoxicity and better viability than the regular AuNPs.
Collapse
Affiliation(s)
- Marielys Torres-Díaz
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
| | - Caren Abreu-Takemura
- Department of Biology, University of Puerto Rico-Mayagüez Campus, Mayagüez 00680, Puerto Rico;
| | - Liz M. Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
- Correspondence:
| |
Collapse
|
7
|
Ma C, Zeng W, Meng Q, Wang C, Peng Y. Identification of partial denitrification granulation enhanced by low C/N ratio in the aspect of metabolomics and quorum sensing. CHEMOSPHERE 2022; 286:131895. [PMID: 34435576 DOI: 10.1016/j.chemosphere.2021.131895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Partial denitrification granular sludge (PDGS) and denitrification granular sludge (DGS) play an important role in nitrogen removal from wastewater. However, the inherent cause of aggregation capacity related to the ratio of COD to nitrogen (COD/N) is still unclear. In this study, metabolomics analysis was combined with microbiological analyses, granular performance and extracellular polymeric substances (EPS) structure to explore the granulation mechanism at different influent COD/N ratios. The results showed that the higher COD/N ratio selectively enhanced the gluconeogenesis pathway, purine and pyrimidine metabolism pathway, resulting in more extracellular polysaccharide (PS) excretion and floc sludge. The absence of carbon source weakened tricarboxylic acid cycle (TCA) reaction, resulting in NAD+ and ADP decrease, nitrite accumulation and change of microbial community structure. The amino acids biosynthesis pathway was enhanced under low COD/N ratio, which promoted the hydrophobicity of EPS. PDGS had stronger Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) than DGS during the operational period. CO8-HSL, C8-HSL and C6-HSL, as the main form of AHLs, played a dominating role in DGS and PDGS. Batch tests illustrated that adding AHLs obviously improved the synthesis of the amino acids, threonine (Thr), tryptophan (Trp), methionine (Met) and glycine (Gly). Dosing AHLs regulated PS synthesis only at a high COD/N ratio. The glucose-6P, glycerate-3p and UDP-Glc were up-regulated only in DSG, which increased the hydrophilic groups in EPS. The results not only provided the new insights into the metabolism of denitrifying granular sludge, but also indicated the application potential of the technologies regarding start-up and operation of granule sludge.
Collapse
Affiliation(s)
- Chenyang Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Chunyan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
8
|
Xu Y, Curtis T, Dolfing J, Wu Y, Rittmann BE. N-acyl-homoserine-lactones signaling as a critical control point for phosphorus entrapment by multi-species microbial aggregates. WATER RESEARCH 2021; 204:117627. [PMID: 34509868 DOI: 10.1016/j.watres.2021.117627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Quorum sensing (QS) has been extensively studied in pure stains of microorganisms, but the ecological roles of QS in multi-species microbial aggregates are poorly understood due to the aggregates' heterogeneity and complexity, in particular the phosphorus (P) entrapment, a key aspect of element cycling. Using periphytic biofilm as a microbial-aggregate model, we addressed how QS signaling via N-acyl-homoserine-lactones (AHLs) regulated P entrapment. The most-abundant AHLs detected were C8-HSL, 3OC8-HSL, and C12-HSL, are the primary regulator of P entrapment in the periphytic biofilm. QS signaling-AHL is a beneficial molecule for bacterial growth in periphytic biofilm and the addition of these three AHLs optimized polyphosphate accumulating organisms (PAOs) community. Growth promotion was accompanied by up-regulation of pyrimidine, purine and energy metabolism. Both intra- and extra-cellular P entrapment were enhanced in the addition of AHLs. AHLs increased extracellular polymeric substances (EPS) production to drive extracellular P entrapment, via up-regulating amino acids biosynthesis and amino sugar/nucleotide sugar metabolism. Also, AHLs improved intracellular P entrapment potential by regulating genes involved in inorganic-P accumulation (ppk, ppx) and P uptake and transport (pit, pstSCAB). This proof-of-concept evidence about how QS signaling regulates P entrapment by microbial aggregates paves the way for managing QS to enhance P removal by microbial aggregates in aquatic environments.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas Curtis
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P. O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
9
|
Soto W, Nishiguchi MK. Environmental Stress Selects for Innovations That Drive Vibrio Symbiont Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic bacteria in the Vibrionaceae are a dynamic group of γ-Proteobacteria that are commonly found throughout the world. Although they primarily are free-living in the environment, they can be commonly found associated with various Eukarya, either as beneficial or pathogenic symbionts. Interestingly, this dual lifestyle (free-living or in symbiosis) enables the bacteria to have enormous ecological breadth, where they can accommodate a variety of stresses in both stages. Here, we discuss some of the most common stressors that Vibrio bacteria encounter when in their free-living state or associated with an animal host, and how some of the mechanisms that are used to cope with these stressors can be used as an evolutionary advantage that increases their diversity both in the environment and within their specific hosts.
Collapse
|
10
|
Nourabadi N, Nishiguchi MK. pH Adaptation Drives Diverse Phenotypes in a Beneficial Bacterium-Host Mutualism. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.611411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abiotic variation can influence the evolution of specific phenotypes that contribute to the diversity of bacterial strains observed in the natural environment. Environmentally transmitted symbiotic bacteria are particularly vulnerable to abiotic fluctuations, given that they must accommodate the transition between the free-living state and the host's internal environment. This type of life history strategy can strongly influence the success of a symbiont, and whether adapting to changes outside the host will allow a greater capacity to survive in symbiosis with the host partner. One example of how environmental breadth is advantageous to the symbiosis is the beneficial association between Vibrio fischeri and sepiolid squids (Cephalopoda: Sepiolidae). Since Vibrio bacteria are environmentally transmitted, they are subject to a wide variety of abiotic variables prior to infecting juvenile squids and must be poised to survive in the host light organ. In order to better understand how a changing abiotic factor (e.g., pH) influences the diversification of symbionts and their eventual symbiotic competence, we used an experimental evolution approach to ascertain how pH adaptation affects symbiont fitness. Results show that low pH adapted Vibrio strains have more efficient colonization rates compared to their ancestral strains. In addition, growth rates had significant differences compared to ancestral strains (pH 6.5–6.8, and 7.2). Bioluminescence production (a marker for symbiont competence) of pH evolved strains also improved at pH 6.5–7.2. Results imply that the evolution and diversification of Vibrio strains adapted to low pH outside the squid improves fitness inside the squid by allowing a higher success rate for host colonization and symbiotic competence.
Collapse
|
11
|
Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri. J Bacteriol 2021; 203:JB.00259-20. [PMID: 33199286 PMCID: PMC7811199 DOI: 10.1128/jb.00259-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.
Collapse
|
12
|
Liu L, Guo S, Chen X, Yang S, Deng X, Tu M, Tao Y, Xiang W, Rao Y. Metabolic profiles of Lactobacillus paraplantarum in biofilm and planktonic states and investigation of its intestinal modulation and immunoregulation in dogs. Food Funct 2021; 12:5317-5332. [PMID: 34015803 DOI: 10.1039/d1fo00905b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of probiotics has recently become a considerably promising research area. The most advanced fourth-generation probiotics involve beneficial bacteria enclosed in biofilms. However, differences in the effects of probiotics in biofilm and those in planktonic states are, as yet, unclear. In this study, it was ascertained that the biofilm mode of Lactobacillus paraplantarum L-ZS9 had a comparatively higher density and stronger resistance. Untargeted metabolomics analysis suggested a significant distinction between planktonic and biofilm cells, with amino acids and carbohydrate metabolism both more active in the biofilm mode. Furthermore, the in vivo experiment showed that the biofilm strain displayed better immunomodulation activity, which could increase the relative abundance of Lactobacillus in the intestinal microbiota of dogs. The relative abundance of intestinal microbiota participating in carbohydrate metabolism was higher in the biofilm probiotic-treated dogs. Correlation analysis between L-ZS9-producing metabolites, dog intestinal microbiome diversity and dog blood immune indexes (sIgA or IgG) revealed the interaction between these three components, which might explain the mechanisms by which biofilm L-ZS9 regulated the intestinal microbiome and immunity activity of the host, through the production of various metabolites. Findings of this study will, thus, enhance understanding of the beneficial effects of biofilm probiotics, as well as provide references for further investigation.
Collapse
Affiliation(s)
- Lei Liu
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Shuyu Guo
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Xing Chen
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Shuhui Yang
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Xi Deng
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Mingxia Tu
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Yufei Tao
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Wenliang Xiang
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Yu Rao
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| |
Collapse
|
13
|
Lei L, Chen J, Liao W, Liu P. Determining the Different Mechanisms Used by Pseudomonas Species to Cope With Minimal Inhibitory Concentrations of Zinc via Comparative Transcriptomic Analyses. Front Microbiol 2020; 11:573857. [PMID: 33343517 PMCID: PMC7744410 DOI: 10.3389/fmicb.2020.573857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas is one of the most diverse bacterial genera identified in the environment. Genome sequence analysis has indicated that this genus can be clustered into three lineages and ten groups. Each group can adopt different mechanisms to thrive under zinc-depleted or high-zinc conditions, two environments that are frequently encountered during their environmental propagation. The response of three prominent Pseudomonas strains (Pseudomonas aeruginosa PAO1, Pseudomonas putida KT2440, and Pseudomonas fluorescens ATCC 13525T) to minimal inhibitory concentrations of zinc were compared using RNA-seq and ultra-performance liquid chromatography-tandem mass spectrometry analysis. Results demonstrated that the three strains shared only minimal similarity at the transcriptional level. Only four genes responsible for zinc efflux were commonly upregulated. P. aeruginosa PAO1 specifically downregulated the operons involved in siderophore synthesis and the genes that encode ribosomal protein, while upregulated the genes associated with antibiotic efflux and cell envelope biosynthesis. The membrane transporters in P. putida KT2440 were globally downregulated, indicating changes in cell permeability. Compared with P. aeruginosa PAO1 and P. putida KT2440, the most remarkable transcriptional variation in P. fluorescens ATCC 13525T is the significant downregulation of the type VI secretion system. Metabolite quantitative analysis showed that low concentrations of the metabolites involved in central carbon metabolism and amino acid synthesis were detected in the three strains. In summary, the cellular responses of the three strains under high-zinc condition is quite divergent. Although similar metal efflux systems were upregulated, the three strains employed different pathways to reduce zinc intrusion. In addition, zinc treatment can increase the difficulties of scavenging P. aeruginosa from its colonization area, and reduce the competitiveness of P. fluorescens in microbiota.
Collapse
Affiliation(s)
| | | | | | - Pulin Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
14
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Abstract
Chinese black truffle (Tuber indicum) is rich in nutrition. However, commercial interests lead to the aroma components and nutrients of T. indicum being greatly affected by overexploitation without consideration of their maturity. This study investigated the proteomic and metabolomic profiles of truffle fruiting bodies at different maturities using a meta-proteomic approach. Among the 3007 identified proteins, the most up-expressed protein in the mature ascocarps was involved in the peptidyl-diphthamide biosynthetic process, while thiamine metabolism was the most differentially expressed pathway. Furthermore, a total of 54 metabolites identified upon LC-MS differed significantly, with 30 being up-expressed in the mature ascocarps, including organic acids, carnitine substances and polysaccharides. Additionally, the ash, protein, fat, crude fiber and total sugar contents were all higher in the mature ascocarps. Overall, our findings reveal that mature truffles have a higher nutritional value, providing a basis for further exploring protein functionality of T. indicum at different maturities.
Collapse
|
16
|
Zhang B, Zhang X, Yan L, Kang Z, Tan H, Jia D, Yang L, Ye L, Li X. WITHDRAWN: Different maturities drive proteomic and metabolomic changes in Chinese black truffle. Food Chem X 2020. [DOI: 10.1016/j.fochx.2020.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Rani A, Babu S. Environmental proteomic studies: closer step to understand bacterial biofilms. World J Microbiol Biotechnol 2018; 34:120. [PMID: 30022302 DOI: 10.1007/s11274-018-2504-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
Abstract
Advancement in proteome analytical techniques and the development of protein databases have been helping to understand the physiology and subtle molecular mechanisms behind biofilm formation in bacteria. This review is to highlight how the evolving proteomic approaches have revealed fundamental molecular processes underlying the formation and regulation of bacterial biofilms. Based on the survey of research reports available on differential expression of proteins in biofilms of bacterial from wide range of environments, four important cellular processes viz. metabolism, motility, transport and stress response that contribute to formation of bacterial biofilms are discussed. This review might answer how proteins related to these cellular processes contribute significantly in stabilizing biofilms of different bacteria in diverse environmental conditions.
Collapse
Affiliation(s)
- Anupama Rani
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Babu
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
19
|
Tang X, Guo Y, Wu S, Chen L, Tao H, Liu S. Metabolomics Uncovers the Regulatory Pathway of Acyl-homoserine Lactones Based Quorum Sensing in Anammox Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2206-2216. [PMID: 29378137 DOI: 10.1021/acs.est.7b05699] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acyl-homoserine lactones (AHLs)-mediated quorum sensing in bacterial communities have been extensively observed. However, the metabolic pathways regulated by AHLs in bacteria remain elusive. Here, we combined long-term reactor operation with microbiological and metabolomics analyses to explore the regulatory pathways for different AHLs in anammox consortia, which perform promising nitrogen removal for wastewater treatment. The results showed that no obvious shifts induced by exogenous AHLs occurred in the microbial community and, mainly, dosing AHLs induced changes in the metabolites. 3OC6-HSL, C6-HSL, and C8-HSL controlled the electron transport carriers that influence the bacterial activity. In contrast, only 3OC6-HSL regulated LysoPC(20:0) metabolism, which affected bacterial growth. AHLs mainly regulated the synthesis of the amino acids Ala, Val, and Glu and selectively regulated Asp and Leu to affect extracellular proteins. Simultaneously, all the AHLs regulated the ManNAc biosynthetic pathways, while OC6-HSL, OC8-HSL, and C6-HSL particularly enriched the UDP-GlcNAc pathway to promote exopolysaccharides, resulting in different aggregation levels of the anammox consortia. Our results not only provide the first metabolic insights into the means by which AHLs affect anammox consortia but also hint at potential strategies for overcoming the limitations of the long start-up period required for wastewater treatment by anammox processing.
Collapse
Affiliation(s)
- Xi Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Yongzhao Guo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- School of Environment and Energy, Shenzhen Graduate School, Peking University , Shenzhen 518055, China
| | - Shanshan Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Liming Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Huchun Tao
- School of Environment and Energy, Shenzhen Graduate School, Peking University , Shenzhen 518055, China
| | - Sitong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
- School of Environment and Energy, Shenzhen Graduate School, Peking University , Shenzhen 518055, China
| |
Collapse
|
20
|
Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G. Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. BIOFOULING 2018; 34:132-148. [PMID: 29319346 DOI: 10.1080/08927014.2017.1413551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
A number of bacteria adopt various lifestyles such as planktonic free-living or sessile biofilm stages. This enables their survival and development in a wide range of contrasting environments. With the aim of highlighting specific metabolic shifts between these phenotypes and to improve the overall understanding of marine bacterial adhesion, a dual metabolomics/proteomics approach was applied to planktonic and biofilm cultures of the marine bacterium Pseudoalteromonas lipolytica TC8. The liquid chromatography mass spectrometry (LC-MS) based metabolomics study indicated that membrane lipid composition was highly affected by the culture mode: phosphatidylethanolamine (PEs) derivatives were over-produced in sessile cultures while ornithine lipids (OLs) were more specifically synthesized in planktonic samples. In parallel, differences between proteomes revealed that peptidases, oxidases, transcription factors, membrane proteins and the enzymes involved in histidine biosynthesis were over-expressed in biofilms while proteins involved in heme production, nutrient assimilation, cell division and arginine/ornithine biosynthesis were specifically up-regulated in free-living cells.
Collapse
Affiliation(s)
- Laurie Favre
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| | | | - Carole Pichereaux
- b Fédération de Recherche FR3450 , CNRS , Toulouse , France
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Audrey Gargaros
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Odile Burlet-Schiltz
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Valérie Cotelle
- d Laboratoire de Recherche en Sciences Végétales , Université de Toulouse, CNRS, UPS , Castanet-Tolosan , France
| | - Gérald Culioli
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| |
Collapse
|
21
|
Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains. Sci Rep 2018; 8:1409. [PMID: 29362474 PMCID: PMC5780479 DOI: 10.1038/s41598-018-19697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value < 0.005) between low and high biofilm-formers. These metabolites include major categories of lipids and metabolites involve in prostaglandin and folate metabolism. Our findings suggest that biofilm formation in H. pylori is complex and probably driven by the bacterium’ endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections.
Collapse
|
22
|
Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, Culioli G. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters. J Proteome Res 2017; 16:1962-1975. [PMID: 28362105 DOI: 10.1021/acs.jproteome.6b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.
Collapse
Affiliation(s)
- Laurie Favre
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| | | | - Stéphane Greff
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Thierry Pérez
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Olivier P Thomas
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France.,National University of Ireland Galway , School of Chemistry, Marine Biodiscovery, Galway, Ireland
| | | | - Gérald Culioli
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| |
Collapse
|