1
|
Khan SA, Rahman ZU, Cai Z, Jiang O, Xu G. Drug-eluting ureteral stents: An overview. J Drug Deliv Sci Technol 2024; 100:106039. [DOI: 10.1016/j.jddst.2024.106039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
2
|
Lyons N, Wu W, Jin Y, Lamont IL, Pletzer D. Using host-mimicking conditions and a murine cutaneous abscess model to identify synergistic antibiotic combinations effective against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1352339. [PMID: 38808066 PMCID: PMC11130353 DOI: 10.3389/fcimb.2024.1352339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of β-lactam and β-lactam/β-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.
Collapse
Affiliation(s)
- Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Wang Y, Li C, Zhang H, Chi Y, Cai Y. The Potentiation Activity of Azithromycin in Combination with Colistin or Levofloxacin Against Pseudomonas aeruginosa Biofilm Infection. Infect Drug Resist 2024; 17:1259-1266. [PMID: 38562404 PMCID: PMC10984211 DOI: 10.2147/idr.s438576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Pseudomonas aeruginosa (PA) often displays drug resistance and biofilm-mediated adaptability. Here, we aimed to evaluate the antibiofilm efficacy of azithromycin-based combination regimens. Methods Minimum inhibitory concentrations (MICs), minimal biofilm eradication concentrations (MBECs), and MBEC-combination of azithromycin, colistin, amikacin, and levofloxacin to bioluminescent strain PAO1 and carbapenem-resistant PAO1 (CRPAO1) were assessed. An animal biofilm infection model was established and detected using a live animal bio-photonic imaging system. Results In vitro, PAO1 and CRPAO1 were susceptible to colistin, amikacin, and levofloxacin, while they were unsusceptible to azithromycin. The combinations based on azithromycin have no synergistic effect on biofilm in vitro. In vivo, azithromycin plus colistin or levofloxacin could shorten the PAO1 biofilm eradication time, which totally eradicates the biofilm in all mice on the 8th or 6th day, while monotherapy only eradicate biofilm in 70% or 80% mice on the 8th day. For CRPAO1 biofilm, only azithromycin-colistin combination and colistin monotherapy eradicated the bacteria in 60% and 40% of mice at the 6th day. Conclusion Azithromycin-based combinations containing levofloxacin or colistin had no synergistic effect in vitro, and they are promising for clinical applications due to the good synergistic activity against PAO1 biofilms in vivo.
Collapse
Affiliation(s)
- Yuhang Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chunsun Li
- Laboratory of Department of Pulmonary and Critical Care Medicine, PLA General Hospital, Beijing, People’s Republic of China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Pouget C, Pantel A, Dunyach-Remy C, Magnan C, Sotto A, Lavigne JP. Antimicrobial activity of antibiotics on biofilm formed by Staphylococcus aureus and Pseudomonas aeruginosa in an open microfluidic model mimicking the diabetic foot environment. J Antimicrob Chemother 2023; 78:540-545. [PMID: 36575632 DOI: 10.1093/jac/dkac438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Diabetic foot infections (DFIs) represent a public health problem because of their frequency and the severity of their consequences, i.e. amputation and mortality. Polymicrobial biofilms on the skin surface of these ulcers complicate wound healing. Few in vitro models exist to study the antibiotics activity in this context. OBJECTIVES This study evaluated the in vitro activity of antibiotics against the two main bacteria isolated in DFI, Staphylococcus aureus and Pseudomonas aeruginosa, using a dynamic system (BioFlux™ 200) and a chronic wound-like medium (CWM) that mimic the foot ulcer environment. METHODS Reference strains and two pairs of clinical S. aureus and P. aeruginosa isolated together from a DFI were cultivated in brain heart infusion and CWM media during 72 h at 37°C, alone and combined in the BioFlux™ 200 system. Antibiotic activity was evaluated after a mechanical debridement. The activities were measured by the reduction of biofilm percentage of bacteria in the microfluidic system using microscopy. RESULTS Daptomycin for S. aureus and ceftazidime for P. aeruginosa showed excellent activity to reduce biofilm biomass, whereas linezolid action was more mitigated and dalbavancin was ineffective. Ceftazidime + daptomycin presented the most potent in vitro activity on a mixed biofilm. CONCLUSIONS The combination of CWM and the BioFlux™ microfluidic system represents a valuable tool to screen the potential antimicrobial activity of antibiotics under conditions mimicking those encountered in DFI. It could help clinicians in their management of chronic wounds.
Collapse
Affiliation(s)
- Cassandra Pouget
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, 30029 Nîmes, France
| | - Alix Pantel
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, 30029 Nîmes, France
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, 30029 Nîmes, France
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, 30029 Nîmes, France
| | - Albert Sotto
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Infectious Diseases, CHU Nîmes, 30029 Nîmes, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, 30029 Nîmes, France
| |
Collapse
|
5
|
Urinary Stent Development and Evaluation Models: In Vitro, Ex Vivo and In Vivo-A European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS) Initiative. Polymers (Basel) 2022; 14:polym14091641. [PMID: 35566810 PMCID: PMC9102855 DOI: 10.3390/polym14091641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background: When trying to modify urinary stents, certain pre-clinical steps have to be followed before clinical evaluation in humans. Usually, the process starts as an in silico assessment. The urinary tract is a highly complex, dynamic and variable environment, which makes a computer simulation closely reflecting physiological conditions extremely challenging. Therefore, the pre-clinical evaluation needs to go through further steps of in vitro, ex vivo and in vivo assessments. Methods and materials: Within the European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS), the authors summarized and evaluated stent assessment models in silico, in vitro, ex vivo and in vivo. The topic and relevant sub-topics were researched in a systematic literature search in Embase, Scope, Web of Science and PubMed. Clinicaltrials.gov was consulted for ongoing trials. Articles were selected systematically according to guidelines with non-relevant, non-complete, and non-English or Spanish language articles excluded. Results: In the first part of this paper, we critically evaluate in vitro stent assessment models used over the last five decades, outlining briefly their strengths and weaknesses. In the second part, we provide a step-by-step guide on what to consider when setting up an ex vivo model for stent evaluation on the example of a biodegradable stent. Lastly, the third part lists and discusses the pros and cons of available animal models for urinary stent evaluation, this being the final step before human trials. Conclusions: We hope that this overview can provide a practical guide and a critical discussion of the experimental pre-clinical evaluation steps needed, which will help interested readers in choosing the right methodology from the start of a stent evaluation process once an in silico assessment has been completed. Only a transparent multidisciplinary approach using the correct methodology will lead to a successful clinical implementation of any new or modified stent.
Collapse
|
6
|
Barakat TM, Shawky G, Absy G, Abd El-Rahman Ragab M. Effect of intrauterine infusion of two cephalosporins, ceftazidime and cephapirin, on uterine bacterial load and uterine horn diameter in bovine subclinical endometritis. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022; 25:289-297. [DOI: 10.15547/bjvm.2020-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This study aimed to evaluate the effect of intrauterine infusion of ceftazidime and cephapirin on uterine bacterial load and uterine horn diameter in bovine subclinical endometritis. At 7-8 weeks postpartum, a total of 122 cows suffering from subclinical endometritis were divided into three groups. Group I cows were intrauterinely (IU) infused with 2 g ceftazidime diluted with 50 mL saline; group II cows were IU infused with 2 g cephapirin diluted with 50 mL saline; and group III cows were kept as untreated control. Vaginal examination, ultrasonography and bacterial examination were done before treatment programme and later repeated twice at 10-day intervals. Staphylococcus spp., Klebsiella spp., Streptococcus spp., Escherichia coli and Proteus spp. were isolated. After the end of the treatment programme, proportions of cows infected with Staphylococcus spp. and Streptococcus spp. were significantly (P<0.05) decreased in ceftazidime and cephapirin groups. However, proportions of cows infected with Escherichia coli were significantly (P<0.05) decreased in the ceftazidime group only. Uterine bacterial loads in ceftazidime and cephapirin groups were significantly decreased (P<0.05). Mean uterine horn diameters in ceftazidime group (2.44±0.03 cm) became significantly lower (P<0.05) than those in cephapirin (2.70±0.04 cm) and control (3.06±0.06 cm) groups. Conception rate in ceftazidime group (80.95%) was significantly (P<0.05) higher than rates recorded in cephapirin (64.00%) and control (26.67%) groups. In conclusion, ceftazidime and cephapirin decreased uterine bacterial load. Moreover, ceftazidime significantly reduced uterine horn diameter compared to the other groups and was associated with significantly higher conception rate. Thus, ceftazidime is recommended for treatment of subclinical endometritis in dairy cows.
Collapse
Affiliation(s)
- T. M. Barakat
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - G. Shawky
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - G. Absy
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Ca-nal University, Egypt
| | | |
Collapse
|
7
|
New Adapted In Vitro Technology to Evaluate Biofilm Formation and Antibiotic Activity Using Live Imaging under Flow Conditions. Diagnostics (Basel) 2021; 11:diagnostics11101746. [PMID: 34679444 PMCID: PMC8535051 DOI: 10.3390/diagnostics11101746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
The polymicrobial nature of biofilms and bacterial interactions inside chronic wounds are keys for the understanding of bacterial cooperation. The aim of this present study was to develop a technique to study and visualize biofilm in live imaging under flow conditions (Bioflux™ 200, Fluxion Biosciences). The BiofluxTM system was adapted using an in vitro chronic wound-like medium (CWM) that mimics the environment encountered in ulcers. Two reference strains of Staphylococcus aureus (Newman) and Pseudomonas aeruginosa (PAO1) were injected in the BiofluxTM during 24 h to 72 h in mono and coculture (ratio 1:1, bacteria added simultaneously) in the CWM vs. a control medium (BHI). The quantification of biofilm formation at each time was evaluated by inverted microscopy. After 72 h, different antibiotics (ceftazidime, imipenem, linezolid, oxacillin and vancomycin) at 1x MIC, 10x MIC and 100x MIC were administrated to the system after an automatic increase of the flow that mimicked a debridement of the wound surface. Biofilm studies highlighted that the two species, alone or associated, constituted a faster and thicker biofilm in the CWM compared to the BHI medium. The effect of antibiotics on mature or “debrided” biofilm indicated that some of the most clinically used antibiotic such as vancomycin or imipenem were not able to disrupt and reduce the biofilm biomass. The use of a life cell imaging with an in vitro CWM represents a promising tool to study bacterial biofilm and investigate microbial cooperation in a chronic wound context.
Collapse
|
8
|
Sagar PK, Sharma P, Singh R. Antibacterial efficacy of different combinations of clove, eucalyptus, ginger, and selected antibiotics against clinical isolates of Pseudomonas aeruginosa. Ayu 2020; 41:123-129. [PMID: 34908797 PMCID: PMC8614201 DOI: 10.4103/ayu.ayu_101_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/18/2019] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa are commonly treated with conventional antibiotic which may lead to some serious side effects in the patients. Conventionally, medicinal plants, including clove, eucalyptus, and ginger, are used for the safe and effective treatment of several diseases. Aims and objectives: The aim and objective of this study is to evaluate the combined antibacterial efficacy of medicinal plants (clove, eucalyptus, and ginger) and selected antibiotic and also combined efficacy of different plants extracts against clinical isolates of P. aeruginosa. Materials and methods: A total of seven clinical isolates and one reference strain (PA01) of P. aeruginosa were included in this study. The antibacterial activity of crude methanol extracts of medicinal plants and selected antibiotics was screened using well-diffusion assay and their minimum inhibitory concentration (MIC) was determined by the microdilution method. Combined efficacy of ceftazidime and plant extracts was tested using standard checkerboard method and different plant extracts were evaluated using broth macrodilution method. Results: All of the seven clinical isolates of P. aeruginosa showed multidrug resistance pattern and were found highly sensitive to ciprofloxacin followed by ceftazidime and gentamicin. Clove exhibited better antibacterial activity as compared to eucalyptus and ginger. Synergistic interaction was found between ceftazidime and plants extracts against reference PA01 and clinical isolate 2. Highest two-fold reduction in MIC was found in the combination of clove-ginger against reference PA01 and clinical isolate 3. Conclusion: The selected medicinal plants are highly efficient for enhancing the antibacterial activity of antibiotic.
Collapse
Affiliation(s)
- Pankaj Kumar Sagar
- Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Zoology, Indira Gandhi National Tribal University (A Central University), Amarkantak, Madhya Pradesh, India
| | - Rambir Singh
- Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University (A Central University), Aizawl, Mizoram, India
| |
Collapse
|
9
|
Kapoor P, Murphy P. Combination antibiotics against Pseudomonas aeruginosa, representing common and rare cystic fibrosis strains from different Irish clinics. Heliyon 2018; 4:e00562. [PMID: 29560472 PMCID: PMC5857811 DOI: 10.1016/j.heliyon.2018.e00562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/27/2017] [Accepted: 02/27/2018] [Indexed: 12/02/2022] Open
Abstract
Objectives To evaluate the effect of antibiotic combination therapy versus single therapy against cystic fibrosis strains of Pseudomonas aeruginosa identified as common and rare among patient groups in different Irish hospitals. Methods This study compares the susceptibility profiles of P. aeruginosa isolates from different cystic fibrosis (CF) clinics in Ireland, collected from 2004–2005. Strains were recovered in small numbers and typed by pulsed-field gel electrophoresis. Five common clonal variants were identified in five different hospitals, described as ‘common strains’. A number of ‘rare strains’ associated with any single patient were also included in the study. Certain virulence factors were determined and in vitro assays such as minimum inhibitory concentrations (MIC) and biofilm inhibitory concentrations (BIC) were employed to assess potential synergistic effects of antipseudomonal antibiotic combination therapy. Results There was no distinct virulence factors associated with clinical strains that were common in comparison to those that were rare. Antibiotic combination testing revealed the majority of combinations were similar to the activity of either antibiotic used as single agents. Tobramycin-ceftazidime was the most effective combination exhibiting synergistic interactions (FIC ≤ 0.5) against certain clinical isolates of P. aeruginosa. Conclusion The efficacy of single antibiotics and synergistic interactions of antibiotic combinations were strain specific, irrespective of virulence characteristics of P. aeruginosa. Common clonal P. aeruginosa strains do not have distinct characteristics that possibly influence persistence in the chronic CF lung. Tobramycin-ceftazidime may be successful for controlling specific P. aeruginosa strains. Further studies on representative isolates are needed to support these results.
Collapse
Affiliation(s)
- Priya Kapoor
- Department of Clinical Microbiology, Adelaide and Meath hospital, Incorporating the National Children's hospital, Tallaght, Dublin, Republic of Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, College Green, Republic of Ireland
- Corresponding author.
| | - Philip Murphy
- Department of Clinical Microbiology, Adelaide and Meath hospital, Incorporating the National Children's hospital, Tallaght, Dublin, Republic of Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, College Green, Republic of Ireland
| |
Collapse
|