1
|
Luo D, Xie W, Ma S, Wang L, Zhu J, Wang Z. A new perspective on the antimicrobial mechanism of linezolid against Staphylococcus aureus revealed by proteomics and metabolomics analysis. Int J Antimicrob Agents 2025; 65:107470. [PMID: 40049374 DOI: 10.1016/j.ijantimicag.2025.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/01/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
Understanding bacterial responses to antimicrobials is crucial for identifying tolerance mechanisms and for developing new therapies. Using mass spectrometry-based metabolomics and proteomics, this study examines the response of Staphylococcus aureus to linezolid (LZD) treatment. Under LZD stress, significant fluctuations were observed in key metabolic pathways such as amino acid biosynthesis and the TCA cycle, alongside a general increase in ribosomal protein complexes. Additionally, LZD disrupted nucleotide metabolism, particularly affecting pyrimidine pathways. Combining LZD with the pyrimidine synthesis inhibitor leflunomide enhanced bactericidal effects both in vitro and in vivo, highlighting the importance of targeting pyrimidine biosynthesis to amplify the antimicrobial efficacy of protein inhibitors. These results underscore downstream metabolic processes as viable targets for synergistic drug combinations, suggesting a strategy to potentially improve the clinical effectiveness of LZD.
Collapse
Affiliation(s)
- Dan Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Weile Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Longlong Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China..
| |
Collapse
|
2
|
Lee JH, Lee U, Yoo JH, Lee TS, Jung JH, Kim HS. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings. PLANT METHODS 2024; 20:44. [PMID: 38493119 PMCID: PMC10943777 DOI: 10.1186/s13007-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Plant scientists have largely relied on pathogen growth assays and/or transcript analysis of stress-responsive genes for quantification of disease severity and susceptibility. These methods are destructive to plants, labor-intensive, and time-consuming, thereby limiting their application in real-time, large-scale studies. Image-based plant phenotyping is an alternative approach that enables automated measurement of various symptoms. However, most of the currently available plant image analysis tools require specific hardware platform and vendor specific software packages, and thus, are not suited for researchers who are not primarily focused on plant phenotyping. In this study, we aimed to develop a digital phenotyping tool to enhance the speed, accuracy, and reliability of disease quantification in Arabidopsis. RESULTS Here, we present the Arabidopsis Disease Quantification (AraDQ) image analysis tool for examination of flood-inoculated Arabidopsis seedlings grown on plates containing plant growth media. It is a cross-platform application program with a user-friendly graphical interface that contains highly accurate deep neural networks for object detection and segmentation. The only prerequisite is that the input image should contain a fixed-sized 24-color balance card placed next to the objects of interest on a white background to ensure reliable and reproducible results, regardless of the image acquisition method. The image processing pipeline automatically calculates 10 different colors and morphological parameters for individual seedlings in the given image, and disease-associated phenotypic changes can be easily assessed by comparing plant images captured before and after infection. We conducted two case studies involving bacterial and plant mutants with reduced virulence and disease resistance capabilities, respectively, and thereby demonstrated that AraDQ can capture subtle changes in plant color and morphology with a high level of sensitivity. CONCLUSIONS AraDQ offers a simple, fast, and accurate approach for image-based quantification of plant disease symptoms using various parameters. Its fully automated pipeline neither requires prior image processing nor costly hardware setups, allowing easy implementation of the software by researchers interested in digital phenotyping of diseased plants.
Collapse
Grants
- Grant No. 2022R1C1C1012137 The National Research Foundation of Korea
- Grant No. 421002-04) The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) and Korea Smart Farm R&D (KosFarm) through the Smart Farm Innovation Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA)
- The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) and Korea Smart Farm R&D (KosFarm) through the Smart Farm Innovation Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA)
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Unseok Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Ji Hye Yoo
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Taek Sung Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Hyoung Seok Kim
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
3
|
Xiao L, Jin J, Song K, Qian X, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Shen L, Cui Y, Yao W, Cui Y, Song Y. Regulatory Functions of PurR in Yersinia pestis: Orchestrating Diverse Biological Activities. Microorganisms 2023; 11:2801. [PMID: 38004812 PMCID: PMC10673613 DOI: 10.3390/microorganisms11112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.
Collapse
Affiliation(s)
- Liting Xiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Zhulin Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Ziyao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yajun Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| |
Collapse
|
4
|
Saxena P, Rauniyar S, Thakur P, Singh RN, Bomgni A, Alaba MO, Tripathi AK, Gnimpieba EZ, Lushbough C, Sani RK. Integration of text mining and biological network analysis: Identification of essential genes in sulfate-reducing bacteria. Front Microbiol 2023; 14:1086021. [PMID: 37125195 PMCID: PMC10133479 DOI: 10.3389/fmicb.2023.1086021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The growth and survival of an organism in a particular environment is highly depends on the certain indispensable genes, termed as essential genes. Sulfate-reducing bacteria (SRB) are obligate anaerobes which thrives on sulfate reduction for its energy requirements. The present study used Oleidesulfovibrio alaskensis G20 (OA G20) as a model SRB to categorize the essential genes based on their key metabolic pathways. Herein, we reported a feedback loop framework for gene of interest discovery, from bio-problem to gene set of interest, leveraging expert annotation with computational prediction. Defined bio-problem was applied to retrieve the genes of SRB from literature databases (PubMed, and PubMed Central) and annotated them to the genome of OA G20. Retrieved gene list was further used to enrich protein-protein interaction and was corroborated to the pangenome analysis, to categorize the enriched gene sets and the respective pathways under essential and non-essential. Interestingly, the sat gene (dde_2265) from the sulfur metabolism was the bridging gene between all the enriched pathways. Gene clusters involved in essential pathways were linked with the genes from seleno-compound metabolism, amino acid metabolism, secondary metabolite synthesis, and cofactor biosynthesis. Furthermore, pangenome analysis demonstrated the gene distribution, where 69.83% of the 116 enriched genes were mapped under "persistent," inferring the essentiality of these genes. Likewise, 21.55% of the enriched genes, which involves specially the formate dehydrogenases and metallic hydrogenases, appeared under "shell." Our methodology suggested that semi-automated text mining and network analysis may play a crucial role in deciphering the previously unexplored genes and key mechanisms which can help to generate a baseline prior to perform any experimental studies.
Collapse
Affiliation(s)
- Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Alain Bomgni
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
| | - Mathew O. Alaba
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
| | - Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Etienne Z. Gnimpieba
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
- *Correspondence: Etienne Z. Gnimpieba,
| | - Carol Lushbough
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Rajesh Kumar Sani,
| |
Collapse
|
5
|
Recombinant Actifensin and Defensin-d2 Induce Critical Changes in the Proteomes of Multidrug-Resistant Pseudomonas aeruginosa and Candida albicans. Microbiol Spectr 2022; 10:e0206222. [PMID: 36135381 PMCID: PMC9602346 DOI: 10.1128/spectrum.02062-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drug-resistant strains of Pseudomonas aeruginosa and Candida albicans pose serious threats to human health because of their propensity to cause fatal infections. Defensin and defensin-like antimicrobial peptides (AMPs) are being explored as new lines of antimicrobials, due to their broad range of activity, low toxicity, and low pathogen resistance. Defensin-d2 and actifensin are AMPs from spinach and Actinomyces ruminicola, respectively, whose mechanisms of action are yet to be clearly elucidated. This study investigated the mechanisms of action of the recombinant AMPs through label-free quantitative proteomics. The data are available at PRIDE with accession number PXD034169. A total of 28 and 9 differentially expressed proteins (DEPs) were identified in the treated P. aeruginosa and C. albicans, respectively, with a 2-fold change threshold and P values of <0.05. Functional analysis revealed that the DEPs were involved in DNA replication and repair, translation, and membrane transport in P. aeruginosa, while they were related mainly to oxidative phosphorylation, RNA degradation, and energy metabolism in C. albicans. Protein-protein interactions showed that the DEPs formed linear or interdependent complexes with one another, indicative of functional interaction. Subcellular localization indicated that the majority of DEPs were cytoplasmic proteins in P. aeruginosa, while they were of nuclear or mitochondrial origin in C. albicans. These results show that recombinant defensin-d2 and actifensin can elicit complex multiple organism responses that cause cell death in P. aeruginosa and C. albicans. IMPORTANCE AMPs are considered essential alternatives to conventional antimicrobials because of their broad-spectrum efficacy and low potential for resistance by target cells. In this study, we established that the recombinant AMPs defensin-d2 and actifensin exert proteomic changes in P. aeruginosa and C. albicans within 1 h after treatment. We also found that the DEPs in peptide-treated P. aeruginosa are related to ion transport and homeostasis, molecular functions including nucleic and amino acid metabolism, and structural biogenesis and activity, while the DEPs in treated C. albicans are mainly involved in membrane synthesis and mitochondrial metabolism. Our results also highlight ATP synthase as a potential drug target for multidrug-resistant P. aeruginosa and C. albicans.
Collapse
|
6
|
Liu Z, Wu Y, Zhang L, Tong S, Jin J, Gong X, Zhong J. rocF affects the production of tetramethylpyrazine in fermented soybeans with Bacillus subtilis BJ3-2. BMC Biotechnol 2022; 22:18. [PMID: 35787694 PMCID: PMC9254598 DOI: 10.1186/s12896-022-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetramethylpyrazine (TTMP) is a flavoring additive that significantly contributes to the formation of flavor compounds in soybean-based fermented foods. Over recent years, the application of TTMP in the food industry and medicine has been widely investigated. In addition, several methods for the industrial-scale production of TTMP, including chemical and biological synthesis, have been proposed. However, there have been few reports on the synthesis of TTMP through amino acid metabolic flux. In this study, we investigated genetic alterations of arginine metabolic flux in solid-state fermentation (SSF) of soybeans with Bacillus subtilis (B.subtilis) BJ3-2 to enhance the TTMP yield. RESULTS SSF of soybeans with BJ3-2 exhibited a strong Chi-flavour (a special flavour of ammonia-containing smelly distinct from natto) at 37 °C and a prominent soy sauce-like aroma at 45 °C. Transcriptome sequencing and RT-qPCR verification showed that the rocF gene was highly expressed at 45 °C but not at 37 °C. Moreover, the fermented soybeans with BJ3-2ΔrocF (a rocF knockout strain in B. subtilis BJ3-2 were obtained by homologous recombination) at 45 °C for 72 h displayed a lighter color and a slightly decreased pH, while exhibiting a higher arginine content (increased by 14%) than that of BJ3-2. However, the ammonia content of fermented soybeans with BJ3-2ΔrocF was 43% lower than that of BJ3-2. Inversely, the NH4+ content in fermented soybeans with BJ3-2ΔrocF was increased by 28% (0.410 mg/kg). Notably, the TTMP content in fermented soybeans with BJ3-2ΔrocF and BJ3-2ΔrocF + Arg (treated with 0.05% arginine) were significantly increased by 8.6% (0.4617 mg/g) and 18.58% (0.504 mg/g) respectively than that of the BJ3-2. CONCLUSION The present study provides valuable information for understanding the underlying mechanism during the TTMP formation process through arginine metabolic flux.
Collapse
Affiliation(s)
- Zhenli Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xian Gong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Zhong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
7
|
Xiao Y, Wu L, He L, Tang Y, Guo S, Zhai S. Transcriptomic analysis using dual RNA sequencing revealed a Pathogen-Host interaction after Edwardsiella anguillarum infection in European eel (Anguilla anguilla). FISH & SHELLFISH IMMUNOLOGY 2022; 120:745-757. [PMID: 34974154 DOI: 10.1016/j.fsi.2021.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 05/26/2023]
Abstract
Many studies have explored differentially expressed genes (DEGs) between some pathogens and hosts, but no study has focused on the interaction of DEGs between Edwardsiella anguillarum (Ea) and Anguilla anguilla (Aa). In this study, we examined the interactions of DEGs during Ea infection and Aa anti-infection processes by dual RNA sequencing. Total RNA from in vitro and in vivo (Aa liver) Ea culture was extracted. Using high-throughput transcriptomics, significant DEGs that were expressed between Ea cultured in vitro versus in vivo and those in the liver of the infected group versus control group were identified. Protein-protein interactions between the pathogen and host were explored using Cytoscape according to the HPIDB 3.0 interaction transcription database. The results showed that the liver in the infection group presented with severe bleeding and a large number of thrombi in the hepatic vessels. We found 490 upregulated and 398 downregulated DEGs of Ea in vivo versus Ea cultured in vitro, and 2177 upregulated and 970 downregulated genes in the liver of the infected eels. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the pathogen DEGs revealed that the upregulated genes were mainly enriched in migration, colonization, biofilm formation, and significantly enriched in ABC transport and quorum sensing; the downregulated genes were mainly involved in metabolism, information transduction, organelle formation, enzyme catalysis, molecular transport, and binding. GO of the host DEGs showed that metabolic process, catalytic activity, single organism metabolic process, small molecule binding, nucleotide binding, nucleotide phosphate binding, and anion binding were markedly enriched. Finally, we found that 79 Ea and 148 Aa proteins encoded by these DEGs were involved in an interaction network, and some pathogen (DegP, gcvP, infC, carB, rpoC, trpD, sthA, and FhuB) and host proteins (MANBA, STAT1, ETS2, ZEP1, TKT1, NMI and RBPMS) appear to play crucial roles in infection. Thus, determining the interaction networks revealed crucial molecular mechanisms underlying the process of pathogenic infection and host anti-infection.
Collapse
Affiliation(s)
- Yiqun Xiao
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Le He
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Yijun Tang
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Blvd, Oshkosh, WI, USA
| | - Songlin Guo
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| | - Shaowei Zhai
- Fisheries College, Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China.
| |
Collapse
|
8
|
Buvelot H, Roth M, Jaquet V, Lozkhin A, Renzoni A, Bonetti EJ, Gaia N, Laumay F, Mollin M, Stasia MJ, Schrenzel J, François P, Krause KH. Hydrogen Peroxide Affects Growth of S. aureus Through Downregulation of Genes Involved in Pyrimidine Biosynthesis. Front Immunol 2021; 12:673985. [PMID: 34557184 PMCID: PMC8454235 DOI: 10.3389/fimmu.2021.673985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the cellular defense against S. aureus, as evidenced by the importance of this pathogen in patients lacking the ROS-generating phagocyte NADPH oxidase NOX2. ROS concentrations required to kill S. aureus in vitro are much higher than those found in the phagosome. We therefore hypothesized that sublethal ROS concentrations may play a role in S. aureus gene dysregulation and investigated the in vitro transcriptomic response of S. aureus to sublethal concentrations of hydrogen peroxide (H2O2). A striking observation of these experiments was a coordinated and massive downregulation of genes involved in pyrimidine metabolism. Using transposon insertion mutants, we demonstrated that deletion of carA, a gene involved in pyrimidine synthesis, led to a significant growth defect and to an increased sensitivity of S. aureus to added H2O2. The phenotype of the carA mutant could be reversed through supplementation with the pyrimidine precursor uracil, or with a multicopy vector encoding carA. As opposed to the impact of ROS on extracellular survival, carA deletion did not affect the intracellular survival in neutrophils. Our results raise the possibility that ROS-dependent downregulation of pyrimidine metabolism might be a survival strategy of S. aureus, allowing colonization through intracellular survival, while decreasing the risk of killing the host through dampened extracellular growth.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Myriam Roth
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrey Lozkhin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Eve-Julie Bonetti
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Gaia
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Floriane Laumay
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Michéle Mollin
- Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Pôle Biologie, Centre Hospitaliser Universitaire (CHU) de Grenoble, Grenoble, France
| | - Marie-José Stasia
- Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Pôle Biologie, Centre Hospitaliser Universitaire (CHU) de Grenoble, Grenoble, France.,Université Grenoble Alpes, Comissariat à l'energie atomique (CEA), Centre National de la Recherche Scientifique (CNRS) and Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jacques Schrenzel
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Genomic Research Laboratory, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Zhang R, Wang Z, Tian Y, Yin Q, Cheng X, Lian M, Zhou B, Zhang X, Yang L. Efficacy of Antimicrobial Peptide DP7, Designed by Machine-Learning Method, Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:1175. [PMID: 31191493 PMCID: PMC6546875 DOI: 10.3389/fmicb.2019.01175] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptides (AMPs) provide a promising strategy against infections involving multidrug-resistant pathogens. In previous studies, we designed a short 12 amino acid AMP DP7, using a machine-learning method based on an amino acid activity contribution matrix. DP7 shows broad-spectrum antimicrobial activities both in vitro and in vivo. Here, we aim to investigate the efficacy of DP7 against multidrug resistant Staphylococcus aureus (S. aureus) and reveal the potential mechanisms. First, by measuring the killing kinetics of DP7 against S. aureus and comparing these results with antibiotics with different antimicrobial mechanisms, we hypothesize that DP7, in addition to its known ability to induce cell wall cation damage, can also exert a full killing effect. With FITC-conjugated or biotin-labeled DP7, we tracked DP7's attachment, membrane permeation and subsequent intracellular distribution in S. aureus. These results indicated that the possible targets of DP7 were within the bacterial cells. Transcriptome sequencing of S. aureus exposed to DP7 identified 333 differentially expressed genes (DEGs) influenced by DP7, involving nucleic acid metabolism, amino acid biosynthesis, cell wall destruction and pathogenesis, respectively, indicating the comprehensive killing efficacy of DP7. In addition, the genome sequencing results of the induced DP7 resistant strain S. aureus DP7-R revealed two-point mutations in the mprF and guaA gene. Moreover, in a murine model for MRSA blood stream infection, intravenously treating mice with DP7 showed a good protective effect on mice. In conclusion, DP7 is an effective bactericide for S. aureus, which deserves further study for clinical application and drug development.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qi Yin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xingjun Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mao Lian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sass A, Kiekens S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7:15665. [PMID: 29142288 PMCID: PMC5688073 DOI: 10.1038/s41598-017-15818-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Small RNAs play a regulatory role in many central metabolic processes of bacteria, as well as in developmental processes such as biofilm formation. Small RNAs of Burkholderia cenocepacia, an opportunistic pathogenic beta-proteobacterium, are to date not well characterised. To address that, we performed genome-wide transcriptome structure analysis of biofilm grown B. cenocepacia J2315. 41 unannotated short transcripts were identified in intergenic regions of the B. cenocepacia genome. 15 of these short transcripts, highly abundant in biofilms, widely conserved in Burkholderia sp. and without known function, were selected for in-depth analysis. Expression profiling showed that most of these sRNAs are more abundant in biofilms than in planktonic cultures. Many are also highly abundant in cells grown in minimal media, suggesting they are involved in adaptation to nutrient limitation and growth arrest. Their computationally predicted targets include a high proportion of genes involved in carbon metabolism. Expression and target genes of one sRNA suggest a potential role in regulating iron homoeostasis. The strategy used for this study to detect sRNAs expressed in B. cenocepacia biofilms has successfully identified sRNAs with a regulatory function.
Collapse
Affiliation(s)
- Andrea Sass
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sanne Kiekens
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Adaptation to Potassium-Limitation Is Essential forAcinetobacter baumanniiPneumonia Pathogenesis. J Infect Dis 2016; 214:2006-2013. [DOI: 10.1093/infdis/jiw476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023] Open
|