1
|
Pan-Resistome Insights into the Multidrug Resistance of Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10050596. [PMID: 34069870 PMCID: PMC8157372 DOI: 10.3390/antibiotics10050596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Acinetobacter baumannii is an important Gram-negative opportunistic pathogen that is responsible for many nosocomial infections. This etiologic agent has acquired, over the years, multiple mechanisms of resistance to a wide range of antimicrobials and the ability to survive in different environments. In this context, our study aims to elucidate the resistome from the A. baumannii strains based on phylogenetic, phylogenomic, and comparative genomics analyses. In silico analysis of the complete genomes of A. baumannii strains was carried out to identify genes involved in the resistance mechanisms and the phylogenetic relationships and grouping of the strains based on the sequence type. The presence of genomic islands containing most of the resistance gene repertoire indicated high genomic plasticity, which probably enabled the acquisition of resistance genes and the formation of a robust resistome. A. baumannii displayed an open pan-genome and revealed a still constant genetic permutation among their strains. Furthermore, the resistance genes suggest a specific profile within the species throughout its evolutionary history. Moreover, the current study performed screening and characterization of the main genes present in the resistome, which can be used in applied research to develop new therapeutic methods to control this important bacterial pathogen.
Collapse
|
2
|
Reconstruction and in silico analysis of new Marinobacter adhaerens t76_800 with potential for long-chain hydrocarbon bioremediation associated with marine environmental lipases. Mar Genomics 2020. [DOI: 10.1016/j.margen.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGDM. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci Rep 2017; 7:10684. [PMID: 28878230 PMCID: PMC5587760 DOI: 10.1038/s41598-017-10932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/16/2017] [Indexed: 12/04/2022] Open
Abstract
The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.
Collapse
Affiliation(s)
- Elwi Machado Sierra
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Universidad Simón Bolívar, Barranquilla, Colombia
| | | | | | - Elisangela Soares Gomes-Pepe
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil
| | - Elkin Rodas Mendoza
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil
| | - Eliana G de Macedo Lemos
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil. .,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil. .,Av. Prof. Paulo Donato Castellane, s/n. Jaboticabal, Post code 14884-900, São Paulo State, Brazil.
| |
Collapse
|
4
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|