1
|
Sun J, Jiang X, Xu F, Tian X, Chu J. Constructing pyrG marker by CRISPR/Cas facilities the highly-efficient precise genome editing on industrial Aspergillus niger strain. Bioprocess Biosyst Eng 2025; 48:679-691. [PMID: 39955701 DOI: 10.1007/s00449-025-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
To prevent the unique difficulty of hygromycin-based gene editing on industrial A. niger strain and increase the working efficiency, the local pyrG marker was removed by well-designed dual sgRNAs and repair template through Cas9-ribonucleoprotein (RNP) strategy in this study. The positive rate of the desired pyrG auxotroph construction was 100%, while no transformant was observed using the traditional methods. The complementation strain showed similar fermentation character as the starting strain. Moreover, an efficient and seamless knock out plasmid-based strategy was established, achieving positive rate at 90% and 50% for challenging Δku70 and Δku80 respectively. Further, combined hygromycin markers and miniaturization cultivation were conducted to select the poor growth strain. Finally, skillfully designed sgRNA and amdS counter-selection repair template were used to obtain ERG3Tyr185 mutation. A highly-efficient precise strategy was established for A. niger through a diagnostic PCR method, with nearly 100% positive rate. Highly- precise desired point mutation was achieved by the developed gene toolbox.
Collapse
Affiliation(s)
- Jingchun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Xing Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China.
| |
Collapse
|
2
|
Nie H, Zhang Y, Li M, Wang W, Wang Z, Zheng J. Expression of microbial lipase in filamentous fungus Aspergillus niger: a review. 3 Biotech 2024; 14:172. [PMID: 38841267 PMCID: PMC11147998 DOI: 10.1007/s13205-024-03998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Lipase has high economic importance and is widely used in biodiesel, food, detergents, cosmetics, and pharmaceutical industries. The rapid development of synthetic biology and system biology has not only paved the way for comprehensively understanding the efficient operation mechanism of Aspergillus niger cell factories but also introduced a new technological system for creating and optimizing high-efficiency A. niger cell factories. In this review, all relevant data on microbial lipase enzyme sources and general properties are gathered and updated. The relationship between A. niger strain morphology and protein production is discussed. The safety of A. niger strain is investigated to ensure product safety. The biotechnologies and factors influencing lipase expression in A. niger are summarized. This review focuses on various strategies to improve lipase expression in A. niger. The summary of these methods and the application of the gene editing technology CRISPR/Cas9 system can further improve the efficiency of constructing the engineered lipase-producing A. niger.
Collapse
Affiliation(s)
- Hongmei Nie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mengjiao Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Weili Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
3
|
Yan HH, Shang YT, Wang LH, Tian XQ, Tran VT, Yao LH, Zeng B, Hu ZH. Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris. J Microbiol Biotechnol 2024; 34:1178-1187. [PMID: 38563100 PMCID: PMC11180907 DOI: 10.4014/jmb.2312.12003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.
Collapse
Affiliation(s)
- Huan huan Yan
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Yi tong Shang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Li hong Wang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Xue qin Tian
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Van-Tuan Tran
- VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Li hua Yao
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Bin Zeng
- Shenzhen Technology University, Shenzhen 518118, P.R. China
| | - Zhi hong Hu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| |
Collapse
|
4
|
Lan J, Zhang L, Gao J, He R. TrLys9 participates in fungal development and lysine biosynthesis in Trichoderma reesei. J GEN APPL MICROBIOL 2023; 69:159-166. [PMID: 36805586 DOI: 10.2323/jgam.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fungi uniquely synthesize lysine through the α-aminoadipate pathway. The saccharopine reductase ScLys9 catalyzes the formation of saccharopine from ɑ-aminoadipate 6-semialdehyde, the seventh step in the lysine biosynthesis pathway in Saccharomyces cerevisiae. Here, we characterized the functions of TrLys9, an ortholog of S. cerevisiae ScLys9 in the industrial filamentous fungus Trichoderma reesei. Transcriptional level analysis indicated that TrLYS9 expression was higher in the conidial stage than in other stages. Disruption of TrLYS9 led to lysine auxotrophy. Phenotype analysis of the ΔTrlys9 mutant showed that TrLYS9 was involved in fungal development including vegetative growth, conidiation, and conidial germination and lysine biosynthesis. Cellulase production was also impaired in the ΔTrlys9 mutant due to the failure of conidial germination in liquid cellulase-inducing medium. Defects in radial growth and asexual development of the ΔTrlys9 mutant were fully recovered when exogenous lysine was added to the medium. These results imply that TrLys9 is involved in fungal development and lysine biosynthesis in T. reesei.
Collapse
Affiliation(s)
- Jinling Lan
- College of Plant Protection, Jilin Agricultural University
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Lin Zhang
- College of Plant Protection, Jilin Agricultural University
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University
| | - Ronglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| |
Collapse
|
5
|
Koch SM, Freidank-Pohl C, Siontas O, Cortesao M, Mota A, Runzheimer K, Jung S, Rebrosova K, Siler M, Moeller R, Meyer V. Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Front Microbiol 2023; 14:1233740. [PMID: 37547691 PMCID: PMC10399693 DOI: 10.3389/fmicb.2023.1233740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (PyoFun) in A. niger by inducing overproduction of the pigment using L-tyrosine in a recombinant ΔhmgA mutant strain (OS4.3). The PyoFun pigment was characterized using three spectroscopic methods, and its antioxidant properties were assessed using a DPPH-assay. Additionally, we evaluated the protective effect of PyoFun against non-ionizing radiation (monochromatic UV-C) and compared its efficacy to a synthetically produced control pyomelanin (PyoSyn). The results confirmed successful production of PyoFun in A. niger through inducible overproduction. Characterization using spectroscopic methods confirmed the presence of PyoFun, and the DPPH-assay demonstrated its strong antioxidant properties. Moreover, PyoFun exhibited a highly protective effect against radiation-induced stress, surpassing the protection provided by PyoSyn. The findings of this study suggest that PyoFun has significant potential as a biological shield against harmful radiation. Notably, PyoFun is synthesized extracellularly, differing it from other fungal melanins (such as L-DOPA- or DHN-melanin) that require cell lysis for pigment purification. This characteristic makes PyoFun a valuable resource for biotechnology, biomedicine, and the space industry. However, further research is needed to evaluate its protective effect in a dried form and against ionizing radiation.
Collapse
Affiliation(s)
- Stella Marie Koch
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Carsten Freidank-Pohl
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Oliver Siontas
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marta Cortesao
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Afonso Mota
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Katharina Runzheimer
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Sascha Jung
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Katarina Rebrosova
- Department of Microbiology, Faculty of Medicine, Masaryk University (MUNI) and St. Anne's Faculty Hospital, Brno, Czechia
| | - Martin Siler
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Thai HD, Do LTBX, Nguyen XT, Vu TX, Tran HTT, Nguyen HQ, Tran VT. A newly constructed Agrobacterium-mediated transformation system based on the hisB auxotrophic marker for genetic manipulation in Aspergillus niger. Arch Microbiol 2023; 205:183. [PMID: 37032362 DOI: 10.1007/s00203-023-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Xuan Thi Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Huy Quang Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Mózsik L, Pohl C, Meyer V, Bovenberg RAL, Nygård Y, Driessen AJM. Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synth Biol 2021; 10:2850-2861. [PMID: 34726388 PMCID: PMC8609570 DOI: 10.1021/acssynbio.1c00260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Filamentous fungi
are highly productive cell factories, often used
in industry for the production of enzymes and small bioactive compounds.
Recent years have seen an increasing number of synthetic-biology-based
applications in fungi, emphasizing the need for a synthetic biology
toolkit for these organisms. Here we present a collection of 96 genetic
parts, characterized in Penicillium or Aspergillus species, that are
compatible and interchangeable with the Modular Cloning system. The
toolkit contains natural and synthetic promoters (constitutive and
inducible), terminators, fluorescent reporters, and selection markers.
Furthermore, there are regulatory and DNA-binding domains of transcriptional
regulators and components for implementing different CRISPR-based
technologies. Genetic parts can be assembled into complex multipartite
assemblies and delivered through genomic integration or expressed
from an AMA1-sequence-based, fungal-replicating shuttle vector. With
this toolkit, synthetic transcription units with established promoters,
fusion proteins, or synthetic transcriptional regulation devices can
be more rapidly assembled in a standardized and modular manner for
novel fungal cell factories.
Collapse
Affiliation(s)
- László Mózsik
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Carsten Pohl
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, 2613 AX Delft, The Netherlands
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yvonne Nygård
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Development of a new Agrobacterium-mediated transformation system based on a dual auxotrophic approach in the filamentous fungus Aspergillus oryzae. World J Microbiol Biotechnol 2021; 37:92. [PMID: 33945073 DOI: 10.1007/s11274-021-03060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Genetic engineering of the filamentous fungus Aspergillus oryzae still requires more suitable selection markers for fungal transformation. Our previous work has shown that Agrobacterium tumefaciens-mediated transformation (ATMT) based on the uridine/uracil auxotrophic mechanism with pyrG as the selection marker is very efficient for gene transfer in A. oryzae. In the present study, we delete the hisB gene, which is essential for histidine biosynthesis, in A. oryzae via homologous recombination and demonstrate that hisB is a reliable selection marker for genetic transformation of this fungus. Under optimal conditions, the ATMT efficiency of the histidine auxotrophic A. oryzae reached 515 transformants per 106 spores. Especially, we have succeeded in constructing a new ATMT system based on dual auxotrophic A. oryzae mutants with two different selection markers including hisB and pyrG. This dual auxotrophic ATMT system displayed a transformation efficiency of 232 transformants per 106 spores for the hisB marker and 318 transformants per 106 spores for the pyrG marker. By using these selectable markers, the co-expression of the DsRed and GFP fluorescent reporter genes was implemented in a single fungal strain. Furthermore, we could perform both the deletion and complementation of the laeA regulatory gene in the same strain of A. oryzae to examine its function. Conclusively, the ATMT system constructed in our work represents a promising genetic tool for studies on recombinant expression and gene function in the industrially important fungus A. oryzae.
Collapse
|
9
|
Establishment of a new and efficient Agrobacterium-mediated transformation system in the nematicidal fungus Purpureocillium lilacinum. Microbiol Res 2021; 249:126773. [PMID: 33940365 DOI: 10.1016/j.micres.2021.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Purpureocillium lilacinum (formerly Paecilomyces lilacinus) is widely commercialized for controlling plant-parasitic nematodes and represents a potential cell factory for enzyme production. This nematicidal fungus is intrinsically resistant to common antifungal agents used for genetic transformation. Therefore, molecular investigations in P. lilacinum are still limited so far. In the present study, we have established a new Agrobacterium tumefaciens-mediated transformation (ATMT) system in P. lilacinum based on the uridine/uracil auxotrophic mechanism. Here, uridine/uracil auxotrophic mutants were simply generated via UV irradiation instead of a complicated genetic approach for the pyrG gene deletion. A stable uridine/uracil auxotrophic mutant was then selected as a recipient for fungal transformation. We further indicated that the pyrG gene from Aspergillus niger can be used as a selectable marker for genetic transformation of P. lilacinum. Under optimized conditions for ATMT, the transformation efficiency reached 2873 ± 224 transformants per 106 spores. Using the constructed ATMT system, we succeeded in expressing the DsRed reporter gene in P. lilacinum. Additionally, we have identified a very promising mutant for chitinase production from a collection of T-DNA insertion transformants. This mutant possesses a special phenotype of hyper-branching mycelium and produces more conidia in comparison to the wild strain. Conclusively, our ATMT system can be exploited for overexpression of target genes or for T-DNA insertion mutagenesis in the agriculturally important fungus P. lilacinum. The genetic approach in the present work may also be applied for developing similar ATMT systems in other fungi, especially for fungi that their genome databases are currently not available.
Collapse
|
10
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Comparative evaluation of Aspergillus niger strains for endogenous pectin-depolymerization capacity and suitability for D-galacturonic acid production. Bioprocess Biosyst Eng 2020; 43:1549-1560. [PMID: 32328731 PMCID: PMC7378126 DOI: 10.1007/s00449-020-02347-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Pectinaceous agricultural residues rich in D-galacturonic acid (D-GalA), such as sugar beet pulp, are considered as promising feedstocks for waste-to-value conversions. Aspergillus niger is known for its strong pectinolytic activity. However, while specialized strains for production of citric acid or proteins are well characterized, this is not the case for the production of pectinases. We, therefore, systematically compared the pectinolytic capabilities of six A. niger strains (ATCC 1015, ATCC 11414, NRRL 3122, CBS 513.88, NRRL 3, and N402) using controlled batch cultivations in stirred-tank bioreactors. A. niger ATCC 11414 showed the highest polygalacturonase activity, specific protein secretion, and a suitable morphology. Furthermore, D-GalA release from sugar beet pulp was 75% higher compared to the standard lab strain A. niger N402. Our study, therefore, presents a robust initial strain selection to guide future process improvement of D-GalA production from agricultural residues and identifies a high-performance base strain for further genetic optimizations.
Collapse
|
12
|
Schäpe P, Kwon MJ, Baumann B, Gutschmann B, Jung S, Lenz S, Nitsche B, Paege N, Schütze T, Cairns TC, Meyer V. Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks. Nucleic Acids Res 2019; 47:559-569. [PMID: 30496528 PMCID: PMC6344863 DOI: 10.1093/nar/gky1183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
A significant challenge in our understanding of biological systems is the high number of genes with unknown function in many genomes. The fungal genus Aspergillus contains important pathogens of humans, model organisms, and microbial cell factories. Aspergillus niger is used to produce organic acids, proteins, and is a promising source of new bioactive secondary metabolites. Out of the 14,165 open reading frames predicted in the A. niger genome only 2% have been experimentally verified and over 6,000 are hypothetical. Here, we show that gene co-expression network analysis can be used to overcome this limitation. A meta-analysis of 155 transcriptomics experiments generated co-expression networks for 9,579 genes (∼65%) of the A. niger genome. By populating this dataset with over 1,200 gene functional experiments from the genus Aspergillus and performing gene ontology enrichment, we could infer biological processes for 9,263 of A. niger genes, including 2,970 hypothetical genes. Experimental validation of selected co-expression sub-networks uncovered four transcription factors involved in secondary metabolite synthesis, which were used to activate production of multiple natural products. This study constitutes a significant step towards systems-level understanding of A. niger, and the datasets can be used to fuel discoveries of model systems, fungal pathogens, and biotechnology.
Collapse
Affiliation(s)
- P Schäpe
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M J Kwon
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - B Baumann
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - B Gutschmann
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - S Jung
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - S Lenz
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - B Nitsche
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - N Paege
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - T Schütze
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - T C Cairns
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - V Meyer
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
13
|
Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6041-6059. [DOI: 10.1007/s00253-019-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/02/2023]
|
14
|
Fang X, Qu Y. Metabolic Engineering of Fungal Strains for Efficient Production of Cellulolytic Enzymes. FUNGAL CELLULOLYTIC ENZYMES 2018:27-41. [PMCID: PMC7120360 DOI: 10.1007/978-981-13-0749-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Filamentous fungi are widely used for production of cellulase and other cellulolytic enzymes. Metabolic engineering of filamentous fungal strains has been applied to improve enzyme production, and rapid progress has been made in the recent years. In this chapter, genetic tools and methods to develop superior enzyme producers are summarized, which includes establishment of genetic modification systems, selection and redesign of promoters, and metabolic engineering using either native transcription factors or artificial ones. In addition, enhancement of cellulase production through morphology engineering was also discussed. Emerging tools including CRISPR-Cas9-based genome editing and synthetic biology are highlighted, which are speeding up mechanisms elucidation and strain development, and will further facilitate economic cellulolytic enzyme production.
Collapse
Affiliation(s)
- Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong China
| |
Collapse
|
15
|
Fiedler MRM, Cairns TC, Koch O, Kubisch C, Meyer V. Conditional Expression of the Small GTPase ArfA Impacts Secretion, Morphology, Growth, and Actin Ring Position in Aspergillus niger. Front Microbiol 2018; 9:878. [PMID: 29867795 PMCID: PMC5952172 DOI: 10.3389/fmicb.2018.00878] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/16/2018] [Indexed: 12/26/2022] Open
Abstract
In filamentous fungi, growth and protein secretion occurs predominantly at the tip of long, thread like cells termed hyphae. This requires coordinated regulation of multiple processes, including vesicle trafficking, exocytosis, and endocytosis, which are facilitated by a complex cytoskeletal apparatus. In this study, functional analyses of the small GTPase ArfA from Aspergillus niger demonstrate that this protein functionally complements the Saccharomyces cerevisiae ARF1/2, and that this protein is essential for A. niger. Loss-of-function and gain-of-function analyses demonstrate that titration of arfA expression impacts hyphal growth rate, hyphal tip morphology, and protein secretion. Moreover, localization of the endocytic machinery, visualized via fluorescent tagging of the actin ring, was found to be abnormal in ArfA under- and overexpressed conditions. Finally, we provide evidence that the major secreted protein GlaA localizes at septal junctions, indicating that secretion in A. niger may occur at these loci, and that this process is likely impacted by arfA expression levels. Taken together, our results demonstrate that ArfA fulfills multiple functions in the secretory pathway of A. niger.
Collapse
Affiliation(s)
- Markus R M Fiedler
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Timothy C Cairns
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Oliver Koch
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Christin Kubisch
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Vera Meyer
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Schuetze T, Meyer V. Polycistronic gene expression in Aspergillus niger. Microb Cell Fact 2017; 16:162. [PMID: 28946884 PMCID: PMC5613464 DOI: 10.1186/s12934-017-0780-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. Results In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. Conclusions The P2A peptide can be used to express at least three genes polycistronically in A. niger. This approach can now be applied to heterologously express entire secondary metabolite gene clusters polycistronically or to co-express any genes of interest in equimolar amounts. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0780-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tabea Schuetze
- Department of Applied Microbiology and Genetics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Vera Meyer
- Department of Applied Microbiology and Genetics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|