1
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
2
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
3
|
Xu H, Xu X, He H, Shao H, Yao Y, Qin A, Qian K. Regulation of Wnt/β-catenin signaling by Marek's disease virus in vitro and in vivo. Front Microbiol 2024; 15:1388862. [PMID: 38638910 PMCID: PMC11025357 DOI: 10.3389/fmicb.2024.1388862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Marek's disease virus (MDV) infection causes immunosuppression in the host, ultimately inducing tumor formation and causing significant economic losses to the poultry industry. While the abnormal activation of the Wnt/β-catenin signaling pathway is closely associated with the occurrence and development of tumors. However, the relationship between MDV and the Wnt/β-catenin pathway remains unclear. In this study, we found that the MDV RB1B strain, but not the MDV vaccine strain CVI988, activated the Wnt/β-catenin signaling pathway by increasing the phosphorylation level of GSK-3β in chicken embryo fibroblast (CEF). In vivo infection experiments in SPF chickens also confirmed that the RB1B strain activated the Wnt/β-catenin signaling pathway, while the CVI988 strain did not lead to its activation. Moreover, unlike the Meq protein encoded by the CVI988 strain, the Meq protein encoded by the RB1B strain specifically activated the Wnt/β-catenin signaling pathway in CEF cells. The findings from these studies extend our understanding of the regulation of Wnt/β-catenin signaling by MDV, which make a new contribution to understanding the virus-host interactions of MDV.
Collapse
Affiliation(s)
- Haiyin Xu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xihao Xu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huifeng He
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Surrey, United Kingdom
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Catalano T, Selvaggi F, Esposito DL, Cotellese R, Aceto GM. Infectious Agents Induce Wnt/β-Catenin Pathway Deregulation in Primary Liver Cancers. Microorganisms 2023; 11:1632. [PMID: 37512809 PMCID: PMC10386003 DOI: 10.3390/microorganisms11071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Interaction between infectious agents and liver tissue, as well as repeated and extreme biological events beyond adaptive capacities, may result in pathological conditions predisposing people to development of primary liver cancers (PLCs). In adults, PLCs mainly comprise hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Various infectious agents in the hepatic microenvironment can destabilize normal liver cell functions by modulating the Wnt/β-catenin pathway components. Among them, hepatotropic viruses B, C, and D are involved in Wnt/β-catenin signaling dysregulation. Other microbial agents, including oncogenic viruses such as Epstein-Barr virus (EBV) and human papilloma virus (HPV), bacteria, e.g., Mycoplasma hyorhinis and Salmonella Typhi, the protozoan parasite Toxoplasma gondii, the fungus Aspergillus flavus, and liver flukes such as Clonorchissinensis or Opisthorchis viverrini, may induce malignant transformation in hepatocytes or in target cells of the biliary tract through aberrant Wnt signaling activation. This review focuses on new insights into infectious agents implicated in the deregulation of Wnt signaling and PLC development. Since the Wnt/β-catenin pathway is a driver of cancer following viral and bacterial infections, molecules inhibiting the complex axis of Wnt signaling could represent novel therapeutic approaches in PLC treatment.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Unit of General Surgery, ASL2 Lanciano-Vasto-Chieti, Ospedale Clinicizzato SS Annunziata, 66100 Chieti, Italy;
| | - Diana Liberata Esposito
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy;
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
5
|
Role of Genetic and Epigenetic Modifications in the Progression of Hepatocellular Carcinoma in Chronic HCV Patients. LIVERS 2023. [DOI: 10.3390/livers3010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is a significant cause of mortality and morbidity among chronically infected HCV patients. It is established that HCV is a primary risk factor for HCC progression. The treatment of HCV infection has been transformed by the introduction of DAAs with high rates of virological clearance. The reduction in cirrhosis-related consequences, particularly HCC, is the long-term objective of DAAs therapy for HCV. Although the risk of developing HCC is decreased in HCV patients who achieve a disease-sustaining virological response, these patients are nevertheless at risk, especially those with severe fibrosis and cirrhosis. Previous studies have shown that HCV induce several mechanisms of hepatocarcinogenesis in the host’s hepatic micro- and macro-environment, which leads to HCC progression. In an HCV-altered environment, compensatory liver regeneration favors chromosomal instability and irreversible alterations, which encourage hepatocyte neoplastic transformation and the development of malignant clones. These mechanisms involve a series of genetic and epigenetic modifications including host genetic factors, dysregulation of several signaling pathways, histone, and DNA modifications including methylation and acetylation. This review highlights the genetic and epigenetic factors that lead to the development of HCC in chronic HCV-infected individuals and can be targeted for earlier HCC diagnosis and prevention.
Collapse
|
6
|
Yao M, Yang JL, Wang DF, Wang L, Chen Y, Yao DF. Encouraging specific biomarkers-based therapeutic strategies for hepatocellular carcinoma. World J Clin Cases 2022; 10:3321-3333. [PMID: 35611205 PMCID: PMC9048543 DOI: 10.12998/wjcc.v10.i11.3321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The prevention, early discovery and effective treatment of patients with hepatocellular carcinoma (HCC) remain a global medical challenge. At present, HCC is still mainly treated by surgery, supplemented by vascular embolization, radio frequency, radiotherapy, chemotherapy and biotherapy. The application of multikinase inhibitor sorafenib, chimeric antigen receptor T cells, or PD-1/PD-L1 inhibitors can prolong the median survival of HCC patients. However, the treatment efficacy is still unsatisfactory due to HCC metastasis and postoperative recurrence. During the process of hepatocyte malignant transformation, HCC tissues can express and secrete many types of specific biomarkers, or oncogenic antigen molecules into blood, for example, alpha-fetoprotein, glypican-3, Wnt3a (one of the key signaling molecules in the Wnt/β-catenin pathway), insulin-like growth factor (IGF)-II or IGF-I receptor, vascular endothelial growth factor, secretory clusterin and so on. In addition, combining immunotherapy with non-coding RNAs might improve anti-cancer efficacy. These biomarkers not only contribute to HCC diagnosis or prognosis, but may also become molecular targets for HCC therapy under developing or clinical trials. This article reviews the progress in emerging biomarkers in basic research or clinical trials for HCC immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- Research Center of Clinical Medicine & Department of Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - De-Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ying Chen
- Department of Oncology, Affiliated Second Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
7
|
Qiao D, He Q, Cheng X, Yao Y, Nair V, Shao H, Qin A, Qian K. Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway. Viruses 2021; 13:v13101968. [PMID: 34696398 PMCID: PMC8539648 DOI: 10.3390/v13101968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Wnt/β-catenin signaling is a highly conserved pathway related to a variety of biological processes in different cells. The regulation of replication of various viruses by Wnt/β-catenin signaling pathway has been reported. However, the interaction between the Wnt/β-catenin pathway and avian leukosis virus is unknown. In the present study, we investigated the effect of modulating the Wnt/β-catenin pathway during avian leukosis virus subgroup J (ALV-J) infection. The activation of the Wnt/β-catenin pathway by GSK-3 inhibitor increased ALV-J mRNA, viral protein expression, and virus production in CEF cells. This increase was suppressed by iCRT14, one of the specific inhibitors of the Wnt/β-catenin signaling pathway. Moreover, treatment with iCRT14 reduced virus titer and viral gene expression significantly in CEF and LMH cells in a dose-dependent manner. Inhibition Wnt/β-catenin signaling pathway by knockdown of β-catenin reduced virus proliferation in CEF cells also. Collectively, these results suggested that the status of Wnt/β-catenin signaling pathway modulated ALV-J replication. These studies extend our understanding of the role of Wnt/β-catenin signaling pathway in ALV-J replication and make a new contribution to understanding the virus–host interactions of avian leukosis virus.
Collapse
Affiliation(s)
- Dandan Qiao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- School of Animal Engineering, Xuzhou Vocational College of Bioengineering, Xuzhou 221006, China
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Qian He
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiaowei Cheng
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK; (Y.Y.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK; (Y.Y.); (V.N.)
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8797-9017; Fax: 86-514-8797-9217
| |
Collapse
|
8
|
Trivedi P, Patel SK, Bellavia D, Messina E, Palermo R, Ceccarelli S, Marchese C, Anastasiadou E, Minter LM, Felli MP. When Viruses Cross Developmental Pathways. Front Cell Dev Biol 2021; 9:691644. [PMID: 34422814 PMCID: PMC8375270 DOI: 10.3389/fcell.2021.691644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Wang SC, Li CY, Chang WT, Cheng WC, Yen CH, Tu WY, Lin ZY, Lin CC, Yeh ML, Huang CF, Huang JF, Dai CY, Chuang WL, Chen YL, Yu ML. Exosome-derived differentiation antagonizing non-protein coding RNA with risk of hepatitis C virus-related hepatocellular carcinoma recurrence. Liver Int 2021; 41:956-968. [PMID: 33346937 DOI: 10.1111/liv.14772] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Differentiation antagonizing non-protein coding RNA is associated with various types of neoplasms. Hepatitis C virus-related hepatocellular carcinoma has a high risk of recurrence. Here we determined the role of differentiation antagonizing non-protein coding RNA in hepatitis C virus-related hepatocarcinogenesis and identified potential therapeutic targets and non-invasive prognostic markers for long-term outcome of hepatitis C virus-related hepatocellular carcinoma after surgical resection. METHODS Differentiation antagonizing non-protein coding RNAs relevant to hepatitis C virus-related hepatocellular carcinoma were identified through comparative RNA-sequencing of tumour and adjacent non-tumour (ANT) tissues in a screening set, and were validated using real-time polymerase chain reaction. Target long non-coding RNAs (lncRNAs) in tissues and serum exosomes were used to predict the recurrence of hepatitis C virus-related hepatocellular carcinoma after curative surgical resection in a large application cohort from 2005 to 2012. RESULTS We confirmed that differentiation antagonizing non-protein coding RNA was upregulated following hepatitis C virus infection and identified as the lncRNA most relevant to hepatitis C virus-related hepatocellular carcinoma in tumour tissues as compared to that in ANT tissues. In 183 hepatitis C virus-related hepatocellular carcinoma patients followed for 10 years after curative HCC resection, the expression level of circulating exosomal differentiation antagonizing non-protein coding RNA was positively associated with HCC recurrence and was the most predictive factor associated with HCC recurrence and mortality (hazard ratio/95% confidence intervals: 7.0/4.3-11.6 and 2.7/1.5-5.1 respectively). CONCLUSIONS Differentiation antagonizing non-protein coding RNA is highly relevant to disease progression of hepatitis C virus-related hepatocellular carcinoma. Our finding indicated that circulating exosomal differentiation antagonizing non-protein coding RNA might serve as a non-invasive prognostic biomarker for hepatitis C virus-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Science, Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yu Tu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Chih Lin
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Li Chen
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Transplant Medicine and Surgery Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel) 2020; 13:ph13070143. [PMID: 32640723 PMCID: PMC7408191 DOI: 10.3390/ph13070143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development. We offer lines of thought to provide ideas for urgently needed studies on the potential long-term effects of SARS-CoV-2 infection.
Collapse
|
11
|
Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, Faraag AHI, Mousa SA. Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. Int J Nanomedicine 2020; 15:2699-2715. [PMID: 32368050 PMCID: PMC7184126 DOI: 10.2147/ijn.s241702] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Current direct-acting antiviral agents for treatment of hepatitis C virus genotype 4a (HCV-4a) have been reported to cause adverse effects, and therefore less toxic antivirals are needed. This study investigated the role of curcumin chitosan (CuCs) nanocomposite as a potential anti-HCV-4a agent in human hepatoma cells Huh7. Methods Docking of curcumin and CuCs nanocomposite and binding energy calculations were carried out. Chitosan nanoparticles (CsNPs) and CuCs nanocomposite were prepared with an ionic gelation method and characterized with TEM, zeta size and potential, and HPLC to calculate encapsulation efficiency. Cytotoxicity studies were performed on Huh7 cells using MTT assay and confirmed with cellular and molecular assays. Anti-HCV-4a activity was determined using real-time PCR and Western blot. Results The strength of binding interactions between protein ligand complexes gave scores with NS3 protease, NS5A polymerase, and NS5B polymerase of -124.91, -159.02, and -129.16, for curcumin respectively, and -68.51, -54.52, and -157.63 for CuCs nanocomposite, respectively. CuCs nanocomposite was prepared at sizes 29-39.5 nm and charges of 33 mV. HPLC detected 4% of curcumin encapsulated into CsNPs. IC50 was 8 µg/mL for curcumin and 25 µg/mL for the nanocomposite on Huh7 but was 25.8 µg/mL and 34 µg/mL on WISH cells. CsNPs had no cytotoxic effect on tested cell lines. Apoptotic genes' expression revealed the caspase-dependent pathway mechanism. CsNPs and CuCs nanocomposite demonstrated 100% inhibition of viral entry and replication, which was confirmed with HCV core protein expression. Conclusion CuCs nanocomposite inhibited HCV-4a entry and replication compared to curcumin alone, suggesting its potential role as an effective therapeutic agent.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Nanotechnology Research Center, British University, Cairo, Egypt
| | - Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt.,Department of Zoology, Faculty of Science,Cairo University, Giza, Egypt
| | - Aya A Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - ElChaimaa B Mohamed
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Bioinformatics Center, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
12
|
Choi BD, Lim HJ, Lee SY, Lee MH, Kil KS, Lim DS, Jeong SJ, Jeong MJ. Thymosin β4 is associated with bone sialoprotein expression via ERK and Smad3 signaling pathways in MDPC-23 odontoblastic cells. Int J Mol Med 2018; 42:2881-2890. [PMID: 30226623 DOI: 10.3892/ijmm.2018.3865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022] Open
Abstract
Thymosin β4 (Tβ4) regulates the expression of molecules associated with dentinogenesis, including bone sialoprotein (BSP). BSP regulates the initiation of mineralization and the direction of dentin growth. However, the association between Tβ4 signaling and BSP expression in odontoblasts remains unclear. Therefore, the aim of the present study was to investigate Tβ4 mRNA expression in odontoblasts during dentinogenesis and the association between the Tβ4 signaling pathway and BSP expression in MDPC‑23 odontoblastic cells. Expression and localization of Tβ4 mRNA was determined by in situ hybridization during mouse tooth development. The effect of Tβ4 signaling on BSP expression was investigated by reverse transcription polymerase chain reaction, western blot analysis, immunofluorescence and a luciferase reporter assay in the presence or absence of specific inhibitors of mitogen activated protein kinase kinase (PD98059) and mothers against decapentaplegic homolog 3 (Smad3; SIS3) in MDPC‑23 cells. The expression of Tβ4 mRNA in the odontoblast layer was highest at postnatal day 5, known as the advanced bell stage, when odontoblasts actively secrete dentin matrix proteins. Tβ4 increased BSP mRNA and protein levels in MDPC‑23 cells, but this was inhibited by PD98059 or SIS3 treatment. Tβ4 increased levels of phosphorylated (p) extracellular signal‑regulated kinase (ERK)1/2, pSmad3, pβ‑catenin, and runt‑related transcription factor 2 (Runx2) protein, but these effects were inhibited by PD98059 or SIS3. Tβ4 induced the nuclear translocation of Runx2 and pSmad3, while nuclear translocation of β‑catenin was decreased. Tβ4 significantly increased BSP promoter activity, which was decreased by PD98059 or SIS3 treatment. Tβ4 induced BSP expression in MDPC‑23 cells via ERK and Smad3 signaling pathways, suggesting its role as a signaling molecule in odontoblasts for regulating BSP secretion during dentinogenesis.
Collapse
Affiliation(s)
- Baik-Dong Choi
- Department of Oral Histology and Developmental Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Hee-Jung Lim
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam, Gyeonggi‑do 13135, Republic of Korea
| | - Seung-Yeon Lee
- Department of Oral Histology and Developmental Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Myoung-Hwa Lee
- Department of Oral Histology and Developmental Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Ki-Sung Kil
- Department of Oral Histology and Developmental Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Do-Seon Lim
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam, Gyeonggi‑do 13135, Republic of Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene, College of Health Science, Youngsan University, Yangsan, Gyeongsangnam‑do 50510, Republic of Korea
| | - Moon-Jin Jeong
- Department of Oral Histology and Developmental Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
13
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|