1
|
Carbonaro M, Aulitto M, Mazurkewich S, Fraia AD, Contursi P, Limauro D, Larsbrink J, Fiorentino G. Genomic mining of Geobacillus stearothermophilus GF16 for xylose production from hemicellulose-rich biomasses using secreted enzymes. N Biotechnol 2024; 82:14-24. [PMID: 38688408 DOI: 10.1016/j.nbt.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The valorization of lignocellulosic biomass, derived from various bio-waste materials, has received considerable attention as a sustainable approach to improve production chains while reducing environmental impact. Microbial enzymes have emerged as key players in the degradation of polysaccharides, offering versatile applications in biotechnology and industry. Among these enzymes, glycoside hydrolases (GHs) play a central role. Xylanases, in particular, are used in a wide range of applications and are essential for the production of xylose, which can be fermented into bioethanol or find use in many other industries. Currently, fungal secretomes dominate as the main reservoir of lignocellulolytic enzymes, but thermophilic microorganisms offer notable advantages in terms of enzyme stability and production efficiency. Here we present the genomic characterization of Geobacillus stearothermophilus GF16 to identify genes encoding putative enzymes involved in lignocellulose degradation. Thermostable GHs secreted by G. stearothermophilus GF16 were investigated and found to be active on different natural polysaccharides and synthetic substrates, revealing an array of inducible GH activities. In particular, the concentrated secretome possesses significant thermostable xylanase and β-xylosidase activities (5 ×103 U/L and 1.7 ×105 U/L, respectively), highlighting its potential for application in biomass valorization. We assessed the hemicellulose hydrolysis capabilities of various agri-food wastes using the concentrated secretome of the strain cultivated on xylan. An impressive 300-fold increase in xylose release compared to a commercially available cocktail was obtained with the secretome, underscoring the remarkable efficacy of this approach.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Alessia Di Fraia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | |
Collapse
|
2
|
Sung JY, Ganbat D, Kim SB, Lee SJ, Lee DW. Complete genome sequences of Geobacillus stearothermophilus strains EF60045 and SJEF4-2 from Korean hot springs. Microbiol Resour Announc 2024; 13:e0057324. [PMID: 39162442 PMCID: PMC11384745 DOI: 10.1128/mra.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
We report the complete genomes of Geobacillus stearothermophilus strains EF60045 and SJEF4-2 from Korean hot springs, with 3,769 and 3,625 thermophilic genes, respectively. G. stearothermophilus EF60045 shows four methylation patterns. G. stearothermophilus SJEF4-2 harbors three plasmids. These findings enhance understanding of Geobacillus strains, aiding in their development as microbial platform hosts.
Collapse
Affiliation(s)
- Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Dariimaa Ganbat
- Department of Bioscience and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, South Korea
| | - Seong Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, South Korea
| | - Sang-Jae Lee
- Department of Bioscience and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Delaunay L, Postollec F, Leguérinel I, Mathot AG. Detection of risk areas in dairy powder processes: The development of thermophilic spore forming bacteria taking into account their growth limits. Int J Food Microbiol 2024; 418:110716. [PMID: 38669747 DOI: 10.1016/j.ijfoodmicro.2024.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anoxybacillus flavithermus, Geobacillus stearothermophilus and Bacillus licheniformis are the main contaminants found in dairy powders. These spore-forming thermophilic bacteria, rarely detected in raw milk, persist, and grow during the milk powder manufacturing process. Moreover, in the form of spores, these species resist and concentrate in the powders during the processes. The aim of this study was to determine the stages of the dairy powder manufacturing processes that are favorable to the growth of such contaminants. A total of 5 strains were selected for each species as a natural contaminant of dairy pipelines in order to determine the minimum and maximum growth enabling values for temperature, pH, and aw and their optimum growth rates in milk. These growth limits were combined with the environmental conditions of temperature, pH and aw encountered at each step of the manufacture of whole milk, skim milk and milk protein concentrate powders to estimate growth capacities using cardinal models and the Gamma concept. These simulations were used to theoretically calculate the population sizes reached for the different strains studied at each stage in between two successive cleaning in place procedures. This approach highlights the stages at which risk occurs for the development of spore-forming thermophilic bacterial species. During the first stages of production, i.e. pre-treatment, pasteurization, standardization and pre-heating before concentration, physico-chemical conditions encountered are suitable for the development and growth of A. flavithermus, G. stearothermophilus and B. licheniformis. During the pre-heating stage and during the first effects in the evaporators, the temperature conditions appear to be the most favorable for the growth of G. stearothermophilus. The temperatures in the evaporator during the last evaporator effects are favorable for the growth of B. licheniformis. In the evaporation stage, low water activity severely limits the development of A. flavithermus.
Collapse
Affiliation(s)
- Louis Delaunay
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France
| | - Florence Postollec
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Z.A. de Creac'h Gwen, 29196, Quimper, Cedex, France
| | - Ivan Leguérinel
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France.
| | - Anne-Gabrielle Mathot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29000 Quimper, France
| |
Collapse
|
4
|
Albasri HM, Almohammadi AA, Alhhazmi A, Bukhari DA, Waznah MS, Mawad AMM. Production and characterization of rhamnolipid biosurfactant from thermophilic Geobacillus stearothermophilus bacterium isolated from Uhud mountain. Front Microbiol 2024; 15:1358175. [PMID: 38873141 PMCID: PMC11173098 DOI: 10.3389/fmicb.2024.1358175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biosurfactants have been given considerable attention as they are potential candidates for several biotechnological applications. Materials and methods In this study, a promising thermophilic biosurfactant-producing HA-2 was isolated from the volcanic and arid region of Uhud mountain, Madinah, Saudi Arabia. It was identified using 16S rRNA gene sequence analysis. The biosurfactant production ability was screened using different methods such as the drop collapse test, oil spreading test, hemolytic activity test, CTAB test, and emulsification index. The ability of rhamnolipid production by the tested strain was confirmed by the polymerase chain reaction (PCR) of rhlAB. The affinity of thermophilic HA-2 to hydrophobic substrates was also investigated. Optimization of biosurfactant production was conducted. The biological activities of produced surfactant were investigated. Results and discussion The isolated HA-1 was identified as Geobacillus stearothermophilus strain OR911984. It could utilize waste sunflower frying oil (WSFF) oil as a low-cost carbon source. It showed high emulsification activity (52 ± 0.0%) and positive results toward other biosurfactant screening tests. The strain showed high cell adhesion to hexane with 41.2% cell surface hydrophobicity. Fourier-transform infrared (FTIR) spectra indicated the presence of hydrophobic chains that comprise lipids, sugars, and hydrophilic glycolipid components. The optimization results showed the optimal factors included potato peel as a carbon source with 68.8% emulsification activity, yeast extract as a nitrogen source with 60% emulsification activity, a pH of 9 (56.6%), and a temperature of 50° (72%). The kinetics showed that optimum biosurfactant production (572.4 mg/L) was recorded at 5 days of incubation. The produced rhamnolipid biosurfactant showed high antimicrobial activity against some human and plant pathogenic bacterial and fungal isolates and high antioxidant activity (90.4%). In addition, it enhanced wheat (Triticum aestivum) growth, with the greatest enhancement obtained with the 5% concentration. Therefore, thermophilic G. stearothermophilus is a promising rhamnolipid biosurfactant producer that utilizes many organic wastes. The produced biosurfactant could be applied as a promising emulsifier, antimicrobial, antioxidant, and plant growth promoter.
Collapse
Affiliation(s)
- Hibah M. Albasri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa A. Almohammadi
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Areej Alhhazmi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Duaa A. Bukhari
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Moayad S. Waznah
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Abdi A, Ranjbar B, Kazemzadeh Y, Aram F, Riazi M. Investigating the mechanism of interfacial tension reduction through the combination of low-salinity water and bacteria. Sci Rep 2024; 14:11408. [PMID: 38762671 PMCID: PMC11102508 DOI: 10.1038/s41598-024-62255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
In the enhanced oil recovery (EOR) process, interfacial tension (IFT) has become a crucial factor because of its impact on the recovery of residual oil. The use of surfactants and biosurfactants can reduce IFT and enhance oil recovery by decreasing it. Asphaltene in crude oil has the structural ability to act as a surface-active material. In microbial-enhanced oil recovery (MEOR), biosurfactant production, even in small amounts, is a significant mechanism that reduces IFT. This study aimed to investigate fluid/fluid interaction by combining low biosurfactant values and low-salinity water using NaCl, MgCl2, and CaCl2 salts at concentrations of 0, 1000, and 5000 ppm, along with Geobacillus stearothermophilus. By evaluating the IFT, this study investigated different percentages of 0, 1, and 5 wt.% of varying asphaltene with aqueous bulk containing low-salinity water and its combination with bacteria. The results indicated G. Stearothermophilus led to the formation of biosurfactants, resulting in a reduction in IFT for both acidic and basic asphaltene. Moreover, the interaction between asphaltene and G. Stearothermophilus with higher asphaltene percentages showed a decrease in IFT under both acidic and basic conditions. Additionally, the study found that the interaction between acidic asphaltene and G. stearothermophilus, in the presence of CaCl2, NaCl, and MgCl2 salts, resulted in a higher formation of biosurfactants and intrinsic surfactants at the interface of the two phases, in contrast to the interaction involving basic asphaltene. These findings emphasize the dependence of the interactions between asphaltene and G. Stearothermophilus, salt, and bacteria on the specific type and concentration of asphaltene.
Collapse
Affiliation(s)
- Arastoo Abdi
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Center, Shiraz University, Shiraz, Iran
| | - Behnam Ranjbar
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Center, Shiraz University, Shiraz, Iran
| | - Yousef Kazemzadeh
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| | - Farzaneh Aram
- Biotechnology Institute, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Masoud Riazi
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Center, Shiraz University, Shiraz, Iran.
- School of Mining and Geosciences, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan.
| |
Collapse
|
6
|
Skowron PM, Łubkowska B, Sobolewski I, Zylicz-Stachula A, Šimoliūnienė M, Šimoliūnas E. Bacteriophages of Thermophilic ' Bacillus Group' Bacteria-A Systematic Review, 2023 Update. Int J Mol Sci 2024; 25:3125. [PMID: 38542099 PMCID: PMC10969951 DOI: 10.3390/ijms25063125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Bacteriophages associated with thermophiles are gaining increased attention due to their pivotal roles in various biogeochemical and ecological processes, as well as their applications in biotechnology and bionanotechnology. Although thermophages are not suitable for controlling bacterial infections in humans or animals, their individual components, such as enzymes and capsid proteins, can be employed in molecular biology and significantly contribute to the enhancement of human and animal health. Despite their significance, thermophages still remain underrepresented in the known prokaryotic virosphere, primarily due to limited in-depth investigations. However, due to their unique properties, thermophages are currently attracting increasing interest, as evidenced by several newly discovered phages belonging to this group. This review offers an updated compilation of thermophages characterized to date, focusing on species infecting the thermophilic bacilli. Moreover, it presents experimental findings, including novel proteomic data (39 proteins) concerning the model TP-84 bacteriophage, along with the first announcement of 6 recently discovered thermophages infecting Geobacillus thermodenitrificans: PK5.2, PK2.1, NIIg10.1, NIIg2.1, NIIg2.2, and NIIg2.3. This review serves as an update to our previous publication in 2021.
Collapse
Affiliation(s)
- Piotr M. Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (A.Z.-S.)
| | - Beata Łubkowska
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland;
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Ireneusz Sobolewski
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (A.Z.-S.)
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (A.Z.-S.)
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Š.)
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Š.)
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: types and mechanism of action. Res Microbiol 2024; 175:104111. [PMID: 37844786 DOI: 10.1016/j.resmic.2023.104111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/18/2023]
Abstract
Biofilms have been recognized as a serious threat to public health as it protects microbes from antimicrobials, immune defence mechanisms, chemical treatments and nutritional stress. Biofilms are also a source of concern in industries and water treatment because their presence compromises the integrity of equipment. To overcome these problems, it is necessary to identify novel anti-biofilm compounds. Products of microorganisms have been identified as promising broad-spectrum anti-biofilm agents. These natural products include biosurfactants, antimicrobial peptides, enzymes and bioactive compounds. Anti-biofilm products of microbial origin are chemically diverse and possess a broad spectrum of activities against biofilms. The objective of this review is to give an overview of the different types of microbial anti-biofilm products and their mechanisms of action.
Collapse
Affiliation(s)
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Minna, Nigeria; African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria.
| | | | | | - Asmau Nna Sulaiman
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reham Tarek
- Department of Biotechnology, Cairo University, Egypt
| |
Collapse
|
8
|
Li JY, Liu YF, Zhou L, Gang HZ, Liu JF, Sun GZ, Wang WD, Yang SZ, Mu BZ. Structural Diversity of the Lipopeptide Biosurfactant Produced by a Newly Isolated Strain, Geobacillus thermodenitrifcans ME63. ACS OMEGA 2023; 8:22150-22158. [PMID: 37360472 PMCID: PMC10286266 DOI: 10.1021/acsomega.3c02194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The genus Geobacillus is active in degradation of hydrocarbons in thermophilic and facultative environments since it was first reported in 1920. Here, we report a new strain, Geobacillus thermodenitrificans ME63, isolated from an oilfield with the ability of producing the biosurfactant. The composition, chemical structure, and surface activity of the biosurfactant produced by G. thermodenitrificans ME63 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight ion mass spectrometry, and surface tensiometer. The biosurfactant produced by strain ME63 was identified as surfactin with six variants, which is one of the representative family of lipopeptide biosurfactants. The amino acid residue sequence in the peptide of this surfactin is N-Glu → Leu → Leu → Val → Leu → Asp → Leu-C. The critical micelle concentration (CMC) of the surfactin is 55 mg L-1, and the surface tension at CMC is 35.9 mN m-1, which is promising in bioremediation and oil recovery industries. The surface activity and emulsification properties of biosurfactants produced by G. thermodenitrificans ME63 showed excellent resistance to temperature changes, salinity changes, and pH changes.
Collapse
Affiliation(s)
- Jia-Yi Li
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Hong-Ze Gang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Jin-Feng Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Daqing
Huali Biotechnology Co., Ltd, Daqing, Heilongjiang 163511, China
| | - Gang-Zheng Sun
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Wei-Dong Wang
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Shi-Zhong Yang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Lai R, Lin M, Yan Y, Jiang S, Zhou Z, Wang J. Comparative Genomic Analysis of a Thermophilic Protease-Producing Strain Geobacillus stearothermophilus H6. Genes (Basel) 2023; 14:466. [PMID: 36833392 PMCID: PMC9956924 DOI: 10.3390/genes14020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The genus Geobacillus comprises thermophilic gram-positive bacteria which are widely distributed, and their ability to withstand high temperatures makes them suitable for various applications in biotechnology and industrial production. Geobacillus stearothermophilus H6 is an extremely thermophilic Geobacillus strain isolated from hyperthermophilic compost at 80 °C. Through whole-genome sequencing and genome annotation analysis of the strain, the gene functions of G. stearothermophilus H6 were predicted and the thermophilic enzyme in the strain was mined. The G. stearothermophilus H6 draft genome consisted of 3,054,993 bp, with a genome GC content of 51.66%, and it was predicted to contain 3750 coding genes. The analysis showed that strain H6 contained a variety of enzyme-coding genes, including protease, glycoside hydrolase, xylanase, amylase and lipase genes. A skimmed milk plate experiment showed that G. stearothermophilus H6 could produce extracellular protease that functioned at 60 °C, and the genome predictions included 18 secreted proteases with signal peptides. By analyzing the sequence of the strain genome, a protease gene gs-sp1 was successfully screened. The gene sequence was analyzed and heterologously expressed, and the protease was successfully expressed in Escherichia coli. These results could provide a theoretical basis for the development and application of industrial strains.
Collapse
Affiliation(s)
- Ruilin Lai
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Zhengfu Zhou
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Laubach JM, Sani RK. Thermophilic Exopolysaccharide Films: A Potential Device for Local Antibiotic Delivery. Pharmaceutics 2023; 15:pharmaceutics15020557. [PMID: 36839880 PMCID: PMC9960241 DOI: 10.3390/pharmaceutics15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Natural polysaccharides being investigated for use in the field of drug delivery commonly require the addition of sugars or pretreated biomass for fabrication. Geobacillus sp. strain WSUCF1 is a thermophile capable of secreting natural polymers, termed exopolysaccharides (EPSs), cultivated from cost-effective, non-treated lignocellulosic biomass carbon substrates. This preliminary investigation explores the capabilities of a 5% wt/wt amikacin-loaded film constructed from the crude EPS extracted from the strain WSUCF1. Film samples were seen to be non-cytotoxic to human keratinocytes and human skin-tissue fibroblasts, maintaining cell viability, on average, above 85% for keratinocytes over 72-h during a cell viability assay. The drug release profile of a whole film sample revealed a steady release of the antibiotic up to 12 h. The amikacin eluted by the EPS film was seen to be active against Staphylococcus aureus, maintaining above a 91% growth inhibition over a period of 48 h. Overall, this study demonstrates that a 5% amikacin-EPS film, grown from lignocellulosic biomass, can be a viable option for preventing or combating infections in clinical treatment.
Collapse
Affiliation(s)
- Joseph M. Laubach
- Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Correspondence:
| |
Collapse
|
11
|
Selection of spore-specific aptamers for Geobacillus stearothermophilus, a food spoilage bacterium. Anal Biochem 2023; 662:114999. [PMID: 36519741 DOI: 10.1016/j.ab.2022.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Due to their ability to form extremely heat resistant spores, anaerobic bacteria are responsible for frequent food spoilage. The development of rapid and specific methods for the detection and quantification of spore contamination is therefore of major interest. In this paper, we describe for the first time the selection of aptamers specific to spores of Geobacillus stearothermophilus (Gbs), which induce flat sour spoilage in vegetable cans. Eighteen Spore-SELEX cycles were performed including 4 counter-selections with 12 bacteria commonly found in cannery. To optimise candidate amplification, PCR in emulsion was performed, and high-throughput sequencing analysis was applied to follow candidate evolution. Sequencing of aptamers from cycle 18 revealed 43 overrepresented sequences whose copy number exceeds 0.15% of the total obtained sequences. Within this group, the A01 aptamer presented a much higher enrichment with a relative abundance of 17.71%. Affinity and specificity for Gbs spores of the 10 most abundant candidates at cycle 18 were confirmed by PCR assay based on aptamer-spore complex formation and filtration step. Obtaining these aptamers is the starting point for the future development of biosensors dedicated to the detection of Gbs spores.
Collapse
|
12
|
Yamagami R, Hori H. Application of mutational profiling: New functional analyses reveal the tRNA recognition mechanism of tRNA m 1A22 methyltransferase. J Biol Chem 2023; 299:102759. [PMID: 36462666 PMCID: PMC9801127 DOI: 10.1016/j.jbc.2022.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transfer RNAs undergo diverse posttranscriptional modifications to regulate a myriad of cellular events including translation, stress response, and viral replication. These posttranscriptional modifications are synthesized by site-specific modification enzymes. Recent RNA-seq techniques have revealed multiple features of tRNA such as tRNA abundance, tRNA modification, and tRNA structure. Here, we adapt a tRNA-sequencing technique and design a new functional analysis where we perform mutational profiling of tRNA modifications to gain mechanistic insights into how tRNA modification enzymes recognize substrate tRNA. Profiling of Geobacillus stearothermophilus tRNAs and protein orthology analysis predict the existence of natural modifications in 44 tRNA molecular species of G. stearothermophilus. We selected the 1-methyladenosine modification at position 22 (m1A22) and tRNA (m1A22) methyltransferase (TrmK) for further analysis. Relative quantification of m1A22 levels in 59 tRNA transcripts by mutational profiling reveals that TrmK selectively methylates a subset of tRNAs. Using 240 variants of tRNALeu transcripts, we demonstrate the conserved nucleosides including U8, A14, G15, G18, G19, U55, Purine57, and A58 are important for the methyl transfer reaction of TrmK. Additional biochemical experiments reveal that TrmK strictly recognizes U8, A14, G18, and U55 in tRNA. Furthermore, these findings from tRNALeu variants were crossvalidated using variants of three different tRNA species. Finally, a model of the TrmK-tRNA complex structure was constructed based on our findings and previous biochemical and structural studies by others. Collectively, our study expands functional analyses of tRNA modification enzyme in a high-throughput manner where our assay rapidly identifies substrates from a large pool of tRNAs.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
13
|
Rubiño S, Peteiro C, Aymerich T, Hortós M. Brown Macroalgae (Phaeophyceae): A Valuable Reservoir of Antimicrobial Compounds on Northern Coast of Spain. Mar Drugs 2022; 20:775. [PMID: 36547922 PMCID: PMC9787464 DOI: 10.3390/md20120775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The search for new sources of antimicrobial compounds has become an urgent need, due to the threat that the spread of bacterial resistance represents for global health and food safety. Brown macroalgae have been proposed as a great reservoir in the search for novel antimicrobial compounds. In this study, mid-polarity extracts were performed with a selection of 20 brown macroalgae species from northern Spain. The total polyphenol, carbohydrate and protein contents were quantified by spectrophotometry. The volatile organic compounds (VOCs) of whole macroalgae were also studied as a biomarker of their metabolic state in the representative species of the tested families by gas chromatography-mass spectrometry (GC-MS). The antimicrobial potential of the extracts was assessed by a disk diffusion assay against 20 target bacteria and further determinations of the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) were performed by a microdilution assay for the active extracts. Ericaria selaginoides, Bifurcaria bifurcata and Dictyota dichotoma showed an antimicrobial effect against six Gram-positive strains: Bacillus cereus, Bacillus subtilis, Geobacillus stearothermophilus, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus haemolyticus. The phenolic content was generally higher in the extracts that showed antimicrobial activity, followed by carbohydrates and low contents of proteins. The results obtained in this study reveal the potential of brown macroalgae as a promising alternative source of antimicrobial compounds as functional ingredients for the application in industrial fields.
Collapse
Affiliation(s)
- Susana Rubiño
- Institute of Agrifood Research and Technology (IRTA), Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121 Girona, Spain
| | - César Peteiro
- Oceanographic Centre of Santander (COST-IEO), Spanish Institute of Oceanography of the Spanish, National Research Council (IEO, CSIC), Marine Culture Units “El Bocal”, Seaweeds Unit, Barrio Corbanera s/n., 39012 Santander, Spain
| | - Teresa Aymerich
- Institute of Agrifood Research and Technology (IRTA), Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121 Girona, Spain
| | - Maria Hortós
- Institute of Agrifood Research and Technology (IRTA), Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121 Girona, Spain
| |
Collapse
|
14
|
Ren D, Fisson S, Dalkara D, Ail D. Immune Responses to Gene Editing by Viral and Non-Viral Delivery Vectors Used in Retinal Gene Therapy. Pharmaceutics 2022; 14:1973. [PMID: 36145721 PMCID: PMC9502120 DOI: 10.3390/pharmaceutics14091973] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness in industrialized countries, and gene therapy is quickly becoming a viable option to treat this group of diseases. Gene replacement using a viral vector has been successfully applied and advanced to commercial use for a rare group of diseases. This, and the advances in gene editing, are paving the way for the emergence of a new generation of therapies that use CRISPR-Cas9 to edit mutated genes in situ. These CRISPR-based agents can be delivered to the retina as transgenes in a viral vector, unpackaged transgenes or as proteins or messenger RNA using non-viral vectors. Although the eye is considered to be an immune-privileged organ, studies in animals, as well as evidence from clinics, have concluded that ocular gene therapies elicit an immune response that can under certain circumstances result in inflammation. In this review, we evaluate studies that have reported on pre-existing immunity, and discuss both innate and adaptive immune responses with a specific focus on immune responses to gene editing, both with non-viral and viral delivery in the ocular space. Lastly, we discuss approaches to prevent and manage the immune responses to ensure safe and efficient gene editing in the retina.
Collapse
Affiliation(s)
- Duohao Ren
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Sylvain Fisson
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
| | - Divya Ail
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Institut de la Vision, INSERM UMR S968, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
15
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
16
|
Fayed AE, El Sheikha AF, Ali AA, Hassan MA. The effects of packaging type and storage temperature on some of UHT milk quality indexes. FOOD SCI TECHNOL INT 2022; 29:361-371. [PMID: 35392728 DOI: 10.1177/10820132221092378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the present study was to illustrate the changes in physicochemical properties in ultra-high temperature (UHT) milk packed into a pouch and Tetra Brik during storage. UHT milk samples were kept at 5 and 25 °C for 3 months and regularly analyzed monthly. During storage, significant increases (p < 0.05) in titratable acidity (TA), water-soluble nitrogen (WSN), and non-protein nitrogen (NPN) when UHT milk was packed into pouch versus Tetra Brik and stored at 25 versus 5 °C. Neither type of packaging nor storage temperature affect pH values during storage. Spore-forming bacterial (SFB) count was always higher in UHT milk packed into pouch versus Tetra Brik. Refrigerated storage kept UHT milk without detectable SFB compared to UHT milk held at 25 °C. Pouch packages were responsible for the migration of phthalate derivatives [dimethyl phthalate "DMP", diethyl phthalate "DEP", dibutyl phthalate "DBP", and di-(2-Ethylhexyl) phthalate "DEHP"] into milk with significantly greater levels than milk filled into Tetra Brik. The total sensory scores were decreased significantly during storage, which was more pronounced in UHT milk filled into pouch versus Tetra Brik or stored at 25 °C versus 5 °C. It is concluded that UHT milk filled into Tetra Brik stored at 5 and 25 °C is better in terms of quality and safety indexes than such filled into a pouch.
Collapse
Affiliation(s)
- Atef E Fayed
- Food Science Department, Faculty of Agriculture, 68791Ain Shams University, Cairo, Egypt
| | - Aly Farag El Sheikha
- College of Bioscience and Bioengineering, 91595Jiangxi Agricultural University, Nanchang, China.,School of Nutrition Sciences, Faculty of Health Sciences, 6363University of Ottawa, 25 University Private Ottawa, Ontario, Canada.,Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, 91595Jiangxi Agricultural University, Nanchang, China.,Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, 91595Jiangxi Agricultural University, Nanchang, China.,Faculty of Agriculture, Department of Food Science and Technology, 68849Minufiya University, Egypt
| | - Ali A Ali
- Food Science Department, Faculty of Agriculture, 68791Ain Shams University, Cairo, Egypt
| | - Moustafa A Hassan
- Food Science Department, Faculty of Agriculture, 68791Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Lusty Beech J, Clare R, Kincannon WM, Erickson E, McGeehan JE, Beckham GT, DuBois JL. A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis. RSC Adv 2022; 12:8119-8130. [PMID: 35424733 PMCID: PMC8982334 DOI: 10.1039/d2ra00612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Esterase enzymes catalyze diverse hydrolysis reactions with important biological, commercial, and biotechnological applications. For the improvement of these biocatalysts, there is a need for widely accessible, inexpensive, and adaptable activity screening assays that identify enzymes with particular substrate specificities. Natural systems for biopolymer bioconversion, and likely those designed to mimic them, depend on cocktails of enzymes, each of which specifically targets the intact material as well as water-soluble subunits of varying size. In this work, we have adapted a UV/visible assay using pH-sensitive sulfonphthalein dyes for the real-time quantification of ester hydrolysis of bis-(2-hydroxyethyl) terephthalate (BHET), a subunit of polyethylene terephthalate (PET) plastic. We applied this method to a diverse set of known PET hydrolases and commercial esterases in a microplate format. The approach identified four PET hydrolases and one commercial esterase with high levels of specificity for BHET hydrolysis. Five additional PET hydrolases and three commercial esterases, including a thermophilic enzyme, effectively hydrolyzed both BHET and its monoester product MHET (mono-(2-hydroxyethyl) terephthalate). Specific activities were discernible within one hour and reactions reached an unequivocal endpoint well within 24 hours. The results from the UV/visible method correlated well with conventional HPLC analysis of the reaction products. We examined the suitability of the method toward variable pH, temperature, enzyme preparation method, mono- and multi-ester substrate type, and level of sensitivity versus stringency, finding the assay to be easily adaptable to diverse screening conditions and kinetic measurements. This method offers an accurate, easily accessible, and cost-effective route towards high-throughput library screening to support the discovery, directed evolution, and protein engineering of these critical biocatalysts.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Rita Clare
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - William M Kincannon
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Erika Erickson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth Portsmouth PO1 2DY UK
- BOTTLE Consortium Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| |
Collapse
|
18
|
Inhibition of biofilm formation of Geobacillus stearothermophilus in calcium-reduced milk protein formulation is associated with calcium, sodium and bacteria growth history: A preliminary study. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Shin H, Kwon CW, Lee MW, Yu H, Chang PS. Antibacterial characterization of erythorbyl laurate against Geobacillus stearothermophilus spores. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Alonso VPP, de Oliveira Morais J, Kabuki DY. Incidence of Bacillus cereus, Bacillus sporothermodurans and Geobacillus stearothermophilus in ultra-high temperature milk and biofilm formation capacity of isolates. Int J Food Microbiol 2021; 354:109318. [PMID: 34246014 DOI: 10.1016/j.ijfoodmicro.2021.109318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022]
Abstract
The presence of mesophilic and thermophilic spore-forming bacteria in UHT milk, as well as biofilm formation in dairy plants, are concerning. The current study explored the spore-forming bacilli diversity in 100 samples of UHT milk (skimmed and whole). Through this work, a total of 239 isolates from UHT milk samples were obtained. B. cereus s.s. was isolated from 7 samples, B. sporothermodurans from 19 and, G. stearothermophilus from 25 samples. Genes encoding hemolysin (HBL), and non-hemolytic (NHE) enterotoxins were detected in B. cereus s.s. isolates. All isolates of B. cereus s.s. (12) B. sporothermodurans (38), and G. stearothermophilus (47) were selected to verify the ability of biofilm formation in microtiter plates. The results showed all isolates could form biofilms. The OD595 values of biofilm formation varied between 0.14 and 1.04 for B. cereus, 0.20 to 1.87 for B. sporothermodurans, and 0.49 to 2.77 for G. stearothermophilus. The data highlights that the dairy industry needs to reinforce control in the initial quality of the raw material and in CIP cleaning procedures; avoiding biofilm formation and consequently a persistent microbiota in processing plants, which can shelter pathogenic species such as B. cereus s.s.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil.
| | - Jéssica de Oliveira Morais
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
21
|
Wang T, Flint S, Palmer J. Heterogeneous response of Geobacillus stearothermophilus biofilms to calcium. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Muñoz M, Comtois-Bona M, Cortes D, Cimenci CE, Du Q, Thompson C, Figueroa JD, Franklin V, Liu P, Alarcon EI. Integrated photothermal decontamination device for N95 respirators. Sci Rep 2021; 11:1822. [PMID: 33469049 PMCID: PMC7815715 DOI: 10.1038/s41598-020-80908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the COVID-19 global pandemic has infected over 25 million people worldwide and resulted in the death of millions. The COVID-19 pandemic has also resulted in a shortage of personal protective equipment (PPE) in many regions around the world, particularly in middle- and low-income countries. The shortages of PPE, such as N95 respirators, is something that will persist until an effective vaccine is made available. Thus, devices that while being easy to operate can also be rapidly deployed in health centers, and long-term residences without the need for major structural overhaul are instrumental to sustainably use N95 respirators. In this report, we present the design and validation of a decontamination device that combines UV-C & B irradiation with mild-temperature treatment. The device can decontaminate up to 20 masks in a cycle of < 30 min. The decontamination process did not damage or reduce the filtering capacity of the masks. Further, the efficacy of the device to eliminate microbes and viruses from the masks was also evaluated. The photothermal treatment of our device was capable of eradicating > 99.9999% of the bacteria and > 99.99% of the virus tested.
Collapse
Affiliation(s)
- Marcelo Muñoz
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
- Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Maxime Comtois-Bona
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
- Biomedical Mechanical Engineering, University of Ottawa, 800 King Edward Ave, Ottawa, ON, K1N6N5, Canada
| | - David Cortes
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
- Biomedical Mechanical Engineering, University of Ottawa, 800 King Edward Ave, Ottawa, ON, K1N6N5, Canada
| | - Cagla Eren Cimenci
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Qiujiang Du
- Cardiac Function Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
| | - Collin Thompson
- Occupational Health, Safety and Biosafety, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Juan David Figueroa
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
| | - Vivian Franklin
- Laboratory Research Resources, Office of Research Services, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
| | - Peter Liu
- Cardiac Function Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
| | - Emilio I Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada.
- Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
23
|
Metagenomics and Culture Dependent Insights into the Distribution of Firmicutes across Two Different Sample Types Located in the Black Hills Region of South Dakota, USA. Microorganisms 2021; 9:microorganisms9010113. [PMID: 33418927 PMCID: PMC7825136 DOI: 10.3390/microorganisms9010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples—South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates.
Collapse
|
24
|
Benammar L, İnan Bektaş K, Menasria T, Beldüz AO, Güler HI, Bedaida IK, Gonzalez JM, Ayachi A. Diversity and enzymatic potential of thermophilic bacteria associated with terrestrial hot springs in Algeria. Braz J Microbiol 2020; 51:1987-2007. [PMID: 32959204 DOI: 10.1007/s42770-020-00376-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
This study aims to determine the diversity of culturable thermophilic bacteria isolated from eight terrestrial hot springs in Northeastern of Algeria using the conventional methods, SDS-PAGE fingerprinting of whole-cell proteins and 16S rRNA gene sequencing. In addition, their hydrolytic enzyme activities were also investigated. A total of 293 strains were isolated from the hot springs' water and sediment using different culture media. Overall, five distinct bacterial groups were characterized by whole-cell protein pattern analysis. Based on the 16S rRNA gene sequencing of 100 selected strains, the isolates were assigned to the following three major phyla: Firmicutes (93%), Deinococcus-Thermus (5%), and Actinobacteria (2%), which included 27 distinct species belonging to 12 different phylotypes, Aeribacillus, Aneurinibacillus, Anoxybacillus, Bacillus, Brevibacillus, Geobacillus, Laceyella, Meiothermus, Saccharomonospora, Thermoactinomyces, Thermobifida, and Thermus. The screening for nine extracellular enzymes showed that 65.87% of the isolates presented at least five types of enzyme activities, and 6.48% of strains combined all tested enzymes (amylase, cellulase, pectinase, esculinase, protease, gelatinase, lipase, lecithinase, and nuclease). It was found that Bacillus, Anoxybacillus, Aeribacillus, and Aneurinibacillus were the genera showing the highest activities. Likewise, the study showed an abundant and diverse thermophilic community with novel taxa presenting a promising source of thermozymes with important biotechnological applications. This study showed that a combined identification method using SDS-PAGE profiles of whole-cell proteins and subsequent 16S rRNA gene sequence analysis could successfully differentiate thermophilic bacteria from Algerian hot springs.
Collapse
Affiliation(s)
- L Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria.
- Molecular Biology Research Laboratory, Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
- Bacteriology Laboratory, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - K İnan Bektaş
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - T Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, 12002, Tebessa, Algeria.
| | - A O Beldüz
- Molecular Biology Research Laboratory, Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - H I Güler
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - I K Bedaida
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - J M Gonzalez
- Spanish National Research Council Seville (CSIC), Institute of Natural Resources and Agrobiology of Seville (IRNAS), Seville, Spain
| | - A Ayachi
- Bacteriology Laboratory, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, 05000, Batna, Algeria
| |
Collapse
|
25
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
26
|
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol 2020; 11:928. [PMID: 32508772 PMCID: PMC7253578 DOI: 10.3389/fmicb.2020.00928] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are complex surface attached communities of bacteria held together by self-produced polymer matrixs mainly composed of polysaccharides, secreted proteins, and extracellular DNAs. Bacterial biofilm formation is a complex process and can be described in five main phases: (i) reversible attachment phase, where bacteria non-specifically attach to surfaces; (ii) irreversible attachment phase, which involves interaction between bacterial cells and a surface using bacterial adhesins such as fimbriae and lipopolysaccharide (LPS); (iii) production of extracellular polymeric substances (EPS) by the resident bacterial cells; (iv) biofilm maturation phase, in which bacterial cells synthesize and release signaling molecules to sense the presence of each other, conducing to the formation of microcolony and maturation of biofilms; and (v) dispersal/detachment phase, where the bacterial cells depart biofilms and comeback to independent planktonic lifestyle. Biofilm formation is detrimental in healthcare, drinking water distribution systems, food, and marine industries, etc. As a result, current studies have been focused toward control and prevention of biofilms. In an effort to get rid of harmful biofilms, various techniques and approaches have been employed that interfere with bacterial attachment, bacterial communication systems (quorum sensing, QS), and biofilm matrixs. Biofilms, however, also offer beneficial roles in a variety of fields including applications in plant protection, bioremediation, wastewater treatment, and corrosion inhibition amongst others. Development of beneficial biofilms can be promoted through manipulation of adhesion surfaces, QS and environmental conditions. This review describes the events involved in bacterial biofilm formation, lists the negative and positive aspects associated with bacterial biofilms, elaborates the main strategies currently used to regulate establishment of harmful bacterial biofilms as well as certain strategies employed to encourage formation of beneficial bacterial biofilms, and highlights the future perspectives of bacterial biofilms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection & International College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Benahmed M, Leguerinel I, Moussa‐Boudjemaa B. Biodiversity, spoilage capacity and heat resistance of mesophilic aerobic spores isolated from milk powders marketed in Algeria. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meryem Benahmed
- Laboratoire de Microbiologie Appliquée à l'Agroalimentaire et à l'Environnement (LAMAABE) Faculté des SNV/STU Université de Tlemcen BP119 13000 Tlemcen Algeria
- Centre universitaire de Ain‐Témouchent route de Sidi Bel‐Abbès N°101 46000 Ain‐Témouchent Algeria
| | - Ivan Leguerinel
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne EA 3882 UMT ALTER'IX Université de Brest F‐29000 Quimper France
| | - Boumedine Moussa‐Boudjemaa
- Laboratoire de Microbiologie Appliquée à l'Agroalimentaire et à l'Environnement (LAMAABE) Faculté des SNV/STU Université de Tlemcen BP119 13000 Tlemcen Algeria
| |
Collapse
|
28
|
Pan-Genome Analyses of Geobacillus spp. Reveal Genetic Characteristics and Composting Potential. Int J Mol Sci 2020; 21:ijms21093393. [PMID: 32403359 PMCID: PMC7246994 DOI: 10.3390/ijms21093393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022] Open
Abstract
The genus Geobacillus is abundant in ecological diversity and is also well-known as an authoritative source for producing various thermostable enzymes. Although it is clear now that Geobacillus evolved from Bacillus, relatively little knowledge has been obtained regarding its evolutionary mechanism, which might also contribute to its ecological diversity and biotechnology potential. Here, a statistical comparison of thirty-two Geobacillus genomes was performed with a specific focus on pan- and core genomes. The pan-genome of this set of Geobacillus strains contained 14,913 genes, and the core genome contained 940 genes. The Clusters of Orthologous Groups (COG) and Carbohydrate-Active Enzymes (CAZymes) analysis revealed that the Geobacillus strains had huge potential industrial application in composting for agricultural waste management. Detailed comparative analyses showed that basic functional classes and housekeeping genes were conserved in the core genome, while genes associated with environmental interaction or energy metabolism were more enriched in the pan-genome. Therefore, the evolution of Geobacillus seems to be guided by environmental parameters. In addition, horizontal gene transfer (HGT) events among different Geobacillus species were detected. Altogether, pan-genome analysis was a useful method for detecting the evolutionary mechanism, and Geobacillus’ evolution was directed by the environment and HGT events.
Collapse
|
29
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
30
|
Puopolo R, Gallo G, Mormone A, Limauro D, Contursi P, Piochi M, Bartolucci S, Fiorentino G. Identification of a New Heavy-Metal-Resistant Strain of Geobacillus stearothermophilus Isolated from a Hydrothermally Active Volcanic Area in Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2678. [PMID: 32295125 PMCID: PMC7215868 DOI: 10.3390/ijerph17082678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023]
Abstract
Microorganisms thriving in hot springs and hydrothermally active volcanic areas are dynamically involved in heavy-metal biogeochemical cycles; they have developed peculiar resistance systems to cope with such metals which nowadays can be considered among the most permanent and toxic pollutants for humans and the environment. For this reason, their exploitation is functional to unravel mechanisms of toxic-metal detoxification and to address bioremediation of heavy-metal pollution with eco-sustainable approaches. In this work, we isolated a novel strain of the thermophilic bacterium Geobacillus stearothermophilus from the solfataric mud pool in Pisciarelli, a well-known hydrothermally active zone of the Campi Flegrei volcano located near Naples in Italy, and characterized it by ribotyping, 16S rRNA sequencing and mass spectrometry analyses. The minimal inhibitory concentration (MIC) toward several heavy-metal ions indicated that the novel G. stearothermophilus isolate is particularly resistant to some of them. Functional and morphological analyses suggest that it is endowed with metal resistance systems for arsenic and cadmium detoxification.
Collapse
Affiliation(s)
- Rosanna Puopolo
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Giovanni Gallo
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Osservatorio Vesuviano, 80125 Napoli, Italy; (A.M.); (M.P.)
| | - Danila Limauro
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Patrizia Contursi
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Osservatorio Vesuviano, 80125 Napoli, Italy; (A.M.); (M.P.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| |
Collapse
|
31
|
Draft Genome Sequence of Geobacillus sp. Strain LEMMJ02, a Thermophile Isolated from Deception Island, an Active Volcano in Antarctica. Microbiol Resour Announc 2019; 8:8/42/e00920-19. [PMID: 31624166 PMCID: PMC6797531 DOI: 10.1128/mra.00920-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thermophilic Geobacillus sp. strain LEMMJ02 was isolated from Fumarole Bay sediment on Deception Island, an active Antarctic volcano. Here, we report the draft genome of LEMMJ02, which consists of 3,160,938 bp with 52.8% GC content and 3,523 protein-coding genes.
Collapse
|
32
|
Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG, Tourova TP, Nazina TN. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int J Syst Evol Microbiol 2019; 69:3001-3008. [PMID: 31145676 DOI: 10.1099/ijsem.0.003486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rod-shaped, spore-forming, thermophilic, chemoorganotrophic, aerobic or facultatively anaerobic bacterial strain, 1017T, was isolated from production water sampled at the Dagang oilfield (PR China), and was characterized by using a polyphasic approach. The strain is capable of anaerobic glucose fermentation. Nitrate is reduced to nitrite. Optimal growth was observed at 60-65 °C, at pH between pH 7.0 and 7.5, and with 1-2 % (w/v) NaCl. The major cellular fatty acids were iso-C17 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analysis based on the 16S rRNA, gyrB and parE gene sequences indicated that the isolate belonged to the genus Geobacillus and was most closely related to Geobacillus thermoleovorans KCTC 3570T (99.5, 96.1 and 97.9 % sequence similarity, respectively). Genome sequencing revealed a genome size of 3.57495 Mb and a DNA G+C content of 51.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain 1017T and G. thermoleovorans KCTC 3570T were 95.9 and 64.9 %, respectively. Results of phylogenomic metrics analysis of the genome and 1172 core genes of strain 1017T and its physiological and biochemical characteristics confirmed that strain 1017T represented a novel species of the genus Geobacillus, for which the name Geobacillusproteiniphilus sp. nov. is proposed. The type strain is 1017T (=VKM B-3132T=KCTC 33986T).
Collapse
Affiliation(s)
- Ekaterina M Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Diyana S Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Denis S Grouzdev
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/1, Moscow, 117312, Russia
| | - Andrey B Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova, 32, Moscow, 119991, Russia
| | - Natalia G Vinokurova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Tatiyana P Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Tamara N Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| |
Collapse
|
33
|
Lin JH, Zhang KC, Tao WY, Wang D, Li S. Geobacillus strains that have potential value in microbial enhanced oil recovery. Appl Microbiol Biotechnol 2019; 103:8339-8350. [PMID: 31501940 DOI: 10.1007/s00253-019-10115-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022]
Abstract
Bacteria from the genus Geobacillus are generally obligately thermophilic, with a unique bioenergy production capacity and unique enzymes. Geobacillus species were isolated primarily from hot springs, oilfields, and associated soils. They often exhibit unique survival patterns in these extreme oligotrophic environments. With the development of the microbial resources found in oilfields, Geobacillus spp. have been proven as valuable bacteria in many reports related to oilfields. After the isolation of Geobacillus by culture methods, more evidence was found that they possess the abilities of hydrocarbon utilization and bioemulsifier production. This paper mainly summarizes some characteristics of the Geobacillus species found in the oilfield environment, focusing on the inference and analysis of hydrocarbon degradation and bioemulsifier synthesis based on existing research, which may reveal their potential value in microbial enhanced oil recovery. It also provides references for understanding microbes in extreme environments.
Collapse
Affiliation(s)
- Jia-Hui Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Kun-Cheng Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Wei-Yi Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Dan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
| |
Collapse
|
34
|
Liang R, Lau MCY, Baars O, Robb FT, Onstott TC. Aspartic acid racemization constrains long-term viability and longevity of endospores. FEMS Microbiol Ecol 2019; 95:5553460. [DOI: 10.1093/femsec/fiz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/20/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Certain microorganisms survive long periods of time as endospores to cope with adverse conditions. Since endospores are metabolically inactive, the extent of aspartic acid (Asp) racemization will increase over time and might kill the spores by preventing their germination. Therefore, understanding the relationship between endospore survivability and Asp racemization is important for constraining the long-term survivability and global dispersion of spore-forming bacteria in nature. Geobacillus stearothermophilus was selected as a model organism to investigate racemization kinetics and survivability of its endospores at 65°C, 75°C and 98°C. This study found that the Asp racemization rates of spores and autoclaved spores were similar at all temperatures. The Asp racemization rate of spores was not significantly different from that of vegetative cells at 65°C. The Asp racemization rate of G. stearothermophilus spores was not significantly different from that of Bacillus subtilis spores at 98°C. The viability of spores and vegetative cells decreased dramatically over time, and the mortality of spores correlated exponentially with the degree of racemization (R2 = 0.9). This latter correlation predicts spore half-lives on the order of hundreds of years for temperatures typical of shallow marine sediments, a result consistent with studies about the survivability of thermophilic spores found in these environments.
Collapse
Affiliation(s)
- Renxing Liang
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Maggie C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Oliver Baars
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21202, USA
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
35
|
Bouslimani A, da Silva R, Kosciolek T, Janssen S, Callewaert C, Amir A, Dorrestein K, Melnik AV, Zaramela LS, Kim JN, Humphrey G, Schwartz T, Sanders K, Brennan C, Luzzatto-Knaan T, Ackermann G, McDonald D, Zengler K, Knight R, Dorrestein PC. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol 2019; 17:47. [PMID: 31189482 PMCID: PMC6560912 DOI: 10.1186/s12915-019-0660-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks. RESULTS Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5-1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics. CONCLUSIONS These findings may lead to next-generation precision beauty products and therapies for skin disorders.
Collapse
Affiliation(s)
- Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Ricardo da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Stefan Janssen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
- Department for Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Chris Callewaert
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
- Center for Microbial Ecology and Technology, Ghent University, 9000, Ghent, Belgium
| | - Amnon Amir
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathleen Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Livia S Zaramela
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Ji-Nu Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Caitriona Brennan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92307, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92307, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92037, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92307, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
36
|
Wang J, Goh KM, Salem DR, Sani RK. Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. WSUCF1. Sci Rep 2019; 9:1608. [PMID: 30733471 PMCID: PMC6367360 DOI: 10.1038/s41598-018-36983-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022] Open
Abstract
Geobacillus sp. WSUCF1 is a Gram-positive, spore-forming, aerobic and thermophilic bacterium, isolated from a soil sample obtained from a compost facility. Strain WSUCF1 demonstrated EPS producing capability using different sugars as the carbon source. The whole-genome analysis of WSUCF1 was performed to disclose the essential genes correlated with nucleotide sugar precursor biosynthesis, assembly of monosaccharide units, export of the polysaccharide chain, and regulation of EPS production. Both the biosynthesis pathway and export mechanism of EPS were proposed based on functional annotation. Additionally, the genome description of strain WSUCF1 suggests sophisticated systems for its adaptation under thermophilic conditions. The presence of genes associated with CRISPR-Cas system, quorum quenching lactonase, polyketide synthesis and arsenic resistance makes this strain a potential candidate for various applications in biotechnology and biomedicine. The present study indicates that strain WSUCF1 has promise as a thermophilic EPS producer for a broad range of industrial applications. To the best of our knowledge, this is the first report on genome analysis of a thermophilic Geobacillus species focusing on its EPS biosynthesis and transportation, which will likely pave the way for both enhanced yield and tailor-made EPS production by thermophilic bacteria.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, 81300, Malaysia
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD, 57701, USA.
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
37
|
Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Appl Microbiol Biotechnol 2018; 102:10425-10437. [PMID: 30310966 DOI: 10.1007/s00253-018-9422-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The genus Geobacillus comprises thermophilic bacilli capable of endospore formation. The members of this genus provide thermostable proteins and can be used in whole cell applications at elevated temperatures; therefore, these organisms are of biotechnological importance. While these applications have been described in previous reviews, the present paper highlights the environmental adaptations and genome diversifications of Geobacillus spp. and their applications in evolutionary-protein engineering. Despite their obligate thermophilic properties, Geobacillus spp. are widely distributed in nature. Because several isolates demonstrate remarkable properties for cell reproduction in their respective niches, they seem to exist not only as endospores but also as vegetative cells in diverse environments. This suggests their excellence in environmental adaptation via genome diversification; in fact, evidence suggests that Geobacillus spp. were derived from Bacillus spp. while diversifying their genomes via horizontal gene transfer. Moreover, when subjected to an environmental stressor, Geobacillus spp. diversify their genomes using inductive mutations and transposable elements to produce derivative cells that are adaptive to the stressor. Notably, inductive mutations in Geobacillus spp. occur more rapidly and frequently than the stress-induced mutagenesis observed in other microorganisms. Owing to this, Geobacillus spp. can efficiently generate mutant genes coding for thermostable enzyme variants from the thermolabile enzyme genes under appropriate selection pressures. This phenomenon provides a new approach to generate thermostable enzymes, termed as thermoadaptation-directed enzyme evolution, thereby expanding the biotechnological potentials of Geobacillus spp. In this review, we have discussed this approach using successful examples and major challenges yet to be addressed.
Collapse
|
38
|
Najar IN, Sherpa MT, Das S, Verma K, Dubey VK, Thakur N. Geobacillus yumthangensis sp. nov., a thermophilic bacterium isolated from a north-east Indian hot spring. Int J Syst Evol Microbiol 2018; 68:3430-3434. [PMID: 30222099 DOI: 10.1099/ijsem.0.003002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, spore-forming, rod-shaped bacterium isolated from the Yumthang hot spring in North Sikkim, India was subjected to taxonomic studies. The thermophilic bacterial isolate was designated as strain AYN2T. Cells were Gram-stain-positive, aerobic, motile, rod-shaped, catalase-positive and methyl red-negative. Strain AYN2T was able to grow in the pH range from 6 to 10 (optimum, pH 7.5-8.0), at 40-70 °C (60 °C) and in NaCl concentrations of 0-4 % (1 %). The major cellular fatty acids were iso-C15 : 0 (12.8 %), iso-C16 : 0 (13.9 %) and iso-C17 : 0 (13.8 %). No matches were found in the rtsba6 Sherlock libraries. The G+C content of the genomic DNA was 42.11 mol%. Based on phylogenetic analysis of the 16S rRNA gene sequences, strain AYNT showed highest sequence similarity to the type strain of Geobacillus toebii (96 %). However, the phenotypic properties of strain AYN2T were clearly distinct from those of G. toebii and related species. On the basis of polyphasic analysis, strain AYN2T represents a novel species in the genus Geobacillus, for which the name Geobacillus yumthangensis sp. nov. is proposed. The type strain is AYN2T(MTCC=12749=KCTC=33950= JCM 32596).
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Sayak Das
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Kamalesh Verma
- 2Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Vikash Kumar Dubey
- 2Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,3Department of Biosciences and Bioengineering, Indian Institute ofTechnology Guwahati, Guwahati-781039, Assam, India
| | - Nagendra Thakur
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| |
Collapse
|
39
|
Zhao Y, Kumar M, Caspers MPM, Nierop Groot MN, van der Vossen JMBM, Abee T. Short communication: Growth of dairy isolates of Geobacillus thermoglucosidans in skim milk depends on lactose degradation products supplied by Anoxybacillus flavithermus as secondary species. J Dairy Sci 2017; 101:1013-1019. [PMID: 29153522 DOI: 10.3168/jds.2017-13372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/20/2017] [Indexed: 01/17/2023]
Abstract
Thermophilic bacilli such as Anoxybacillus and Geobacillus are important contaminants in dairy powder products. Remarkably, one of the common contaminants, Geobacillus thermoglucosidans, showed poor growth in skim milk, whereas significant growth of G. thermoglucosidans was observed in the presence of an Anoxybacillus flavithermus dairy isolate. In the present study, we investigated the underlying reason for this growth dependence of G. thermoglucosidans. Whole-genome sequences of 4 A. flavithermus strains and 4 G. thermoglucosidans strains were acquired, with special attention given to carbohydrate utilization clusters and proteolytic enzymes. Focusing on traits relevant for dairy environments, comparative genomic analysis revealed that all G. thermoglucosidans strains lacked the genes necessary for lactose transport and metabolism, showed poor growth in skim milk, and produced white colonies on X-gal plates, indicating the lack of β-galactosidase activity. The A. flavithermus isolates scored positive in these tests, consistent with the presence of a putative lactose utilization gene cluster. All tested isolates from both species showed proteolytic activity on milk plate count agar plates. Adding glucose or galactose to liquid skim milk supported growth of G. thermoglucosidans isolates, in line with the presence of the respective monosaccharide utilization gene clusters in the genomes. Analysis by HPLC of A. flavithermus TNO-09.006 culture filtrate indicated that the previously described growth dependence of G. thermoglucosidans in skim milk was based on the supply of glucose and galactose by A. flavithermus TNO-09.006.
Collapse
Affiliation(s)
- Y Zhao
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands; Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, the Netherlands; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands
| | - M Kumar
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands
| | - M P M Caspers
- TNO Microbiology and Systems Biology, Postbus 360, 3700 AJ Zeist, the Netherlands
| | - M N Nierop Groot
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands; Wageningen Food and Biobased Research, PO Box 17, 6700 AA Wageningen, the Netherlands
| | | | - T Abee
- Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, the Netherlands; Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands.
| |
Collapse
|