1
|
Vasudevan S, David H, Chanemougam L, Ramani J, Ramesh Sangeetha M, Solomon AP. Emergence of persister cells in Staphylococcus aureus: calculated or fortuitous move? Crit Rev Microbiol 2024; 50:64-75. [PMID: 36548910 DOI: 10.1080/1040841x.2022.2159319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
A stable but reversible phenotype switch from normal to persister state is advantageous to the intracellular pathogens to cause recurrent infections and to evade the host immune system. Staphylococcus aureus is a versatile opportunistic pathogen known to cause chronic infections with significant mortality. One of the notable features is the ability to switch to a per-sisters cell, which is found in planktonic and biofilm states. This phenotypic switch is always an open question to explore the hidden fundamental science that coheres with a calculated or fortuitous move. Toxin-antitoxin modules, nutrient stress, and an erroneous translation-enabled state of dormancy entail this persistent behaviour in S. aureus. It is paramount to get a clear picture of why the cell chooses to enter a persistent condition, as it would decide the course of treatment. Analyzing the exit from a persistent state to an active state and the subsequent repercussion of this transition is essential to determine its role in chronic infections. This review attempts to provide a constructed argument discussing the most widely accepted mechanisms and identifying the various attributes of persistence.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Lakshmi Chanemougam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Jayalakshmi Ramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Maanasa Ramesh Sangeetha
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
2
|
Pont CL, Bernay B, Gérard M, Dhalluin A, Gravey F, Giard JC. Proteomic characterization of persisters in Enterococcus faecium. BMC Microbiol 2024; 24:9. [PMID: 38172710 PMCID: PMC10765921 DOI: 10.1186/s12866-023-03162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Enterococcus faecium is a Gram-positive bacterium, naturally present in the human intestinal microbiota, but is also an opportunistic pathogen responsible for healthcare-associated infections. Persisters are individuals of a subpopulation able to survive by arrest of growth coping with conditions that are lethal for the rest of the population. These persistent cells can grow again when the stress disappears from their environment and can cause relapses. RESULTS In this study, we highlighted that ciprofloxacin (10-fold the MIC) led to the formation of persister cells of E. faecium. The kill curve was typically biphasic with an initial drop of survival (more than 2 orders of magnitude reduction) followed by a constant bacterial count. Growth curves and antimicrobial susceptibility tests of these persisters were similar to those of the original cells. In addition, by genomic analyses, we confirmed that the persisters were genotypically identical to the wild type. Comparative proteomic analysis revealed that 56 proteins have significantly different abundances in persisters compared to cells harvested before the addition of stressing agent. Most of them were related to energetic metabolisms, some polypeptides were involved in transcription regulation, and seven were stress proteins like CspA, PrsA, ClpX and particularly enzymes linked to the oxidative stress response. CONCLUSIONS This work provided evidences that the pathogen E. faecium was able to enter a state of persister that may have an impact in chronic infections and relapses. Moreover, putative key effectors of this phenotypical behavior were identified by proteomic approach.
Collapse
Affiliation(s)
- Charlotte Le Pont
- UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Benoît Bernay
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Normandie, Caen, 14000, France
| | - Mattéo Gérard
- UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - Anne Dhalluin
- UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, Caen, F-14000, France
| | - François Gravey
- Department of infectious agents, UNICAEN, Univ Rouen Normandie, INSERM, DYNAMICURE UMR 1311, CHU Caen, Caen, F-14000, France
| | | |
Collapse
|
3
|
Wang Y, Ye Q, Cui Y, Wu Y, Cao S, Hu F. Impact and mechanisms of drag-reducing polymers on shear stress regulation in pulmonary hypertension. Clin Hemorheol Microcirc 2024; 88:247-261. [PMID: 38905038 DOI: 10.3233/ch-242281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a refractory disease characterized by elevated pulmonary artery pressure and resistance. Drag-reducing polymers (DRPs) are blood-soluble macromolecules that reduce vascular resistance by altering the blood dynamics and rheology. Our previous work indicated that polyethylene oxide (PEO) can significantly reduce the medial wall thickness and vascular resistance of the pulmonary arteries, but the specific mechanism is still unclear. METHODS This study was designed to investigate the role and mechanism of PEO on intracellular calcium [Ca2 +] i and cytoskeletal proteins of endothelial cells (ECs) induced by low shear stress (LSS) in PH. Primary Pulmonary Artery Endothelial Cells (PAECs) were subjected to steady LSS (1 dyn/cm2) or physiological shear stress (SS) (10 dyn/cm2) for 20 h in a BioFlux 200 flow system. Calcium influx assays were conducted to evaluate the mechanisms of PEO on [Ca2 +] i. Subsequently, taking the key protein that induces cytoskeletal remodeling, the regulatory light chain (RLC) phosphorylation, as the breakthrough point, this study focused on the two key pathways of PEO that regulate phosphorylation of RLC: Myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK) pathways. RESULTS Our current research revealed that PEO at LSS (1 dyn/cm2) significantly suppressed LSS-induced [Ca2 +] i and the expression level of transient receptor potential channel 1(TRPC1). In addition, ECs convert LSS stimuli into the upregulation of cytoskeletal proteins, including filamentous actin (F-actin), MLCK, ROCK, p-RLC, and pp-RLC. Further experiments using pharmacological inhibitors demonstrated that PEO at the LSS downregulated cytoskeleton-related proteins mainly through the ROCK and MLCK pathways. CONCLUSIONS This study considered intracellular calcium and cytoskeleton rearrangement as entry points to study the application of PEO in the biomedical field, which has important theoretical significance and practical application value for the treatment of PH.
Collapse
Affiliation(s)
- Yali Wang
- Department of Respiratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qing Ye
- Department of Respiratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yongqi Cui
- Department of Respiratory Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yunjiang Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sipei Cao
- Department of Respiratory Medicine, The Third People's Hospital of Hefei, Hefei, China
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Feng Hu
- Department of Cardiology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
4
|
Hou Z, Zhang B, Xiao Z, Peng C, Que Z, Xu Y, Wu Z. Repurposing CD5789 as an Antimicrobial Agent Against MRSA and Its High Resistant Phonotypes. Curr Microbiol 2023; 80:230. [PMID: 37256372 DOI: 10.1007/s00284-023-03332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a great threat to human health, and the formation of biofilm and persister cells make the situation even worse. Drug repurposing is an effective way to solve this problem by shortening the drug development times and reducing the research costs. In this study, CD5789 (trifarotene), a fourth-generation retinoid to be approved by the FDA in 2019 for the topical acne vulgaris regimens, was exhibited antimicrobial activity against MRSA type strains and its clinical isolates with the minimal concentration (MIC) of 2-4 μg/mL and 4-16 μg/mL, respectively, in a dose-dependent manner. By crystal violet staining, we found that CD5789 could inhibit the biofilm formation by MRSA and could further eradicate the pre-formed biofilm at the concentration of 8 μg/mL. By checkerboard dilution assay, sub-MIC of CD5789 showed synergistic antimicrobial effects with sub-MIC of gentamycin against MRSA type strains as well as clinical isolates. In addition, CD5789 also exhibited effective bactericidal activity against MRSA persister cells at the concentration of 8 ~ 16 μg/mL. Extremely low cytotoxicity of CD5789 was observed by CCK-8 assay indicated the well tolerability to human body. In all, CD5789 has the potential to be an alternative for the treatment of refractory MRSA-related infections.
Collapse
Affiliation(s)
- Zhengli Hou
- Department of Clinical Laboratory, The Fourth Hospital of Changsha, Changsha, 410006, Hunan, China
- Department of Clinical Laboratory, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Biming Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Changsha, Changsha, 410006, Hunan, China
| | - Zuoxun Xiao
- Department of Clinical Laboratory, The Fourth Hospital of Changsha, Changsha, 410006, Hunan, China
| | - Cheng Peng
- Department of Clinical Laboratory, The Fourth Hospital of Changsha, Changsha, 410006, Hunan, China
| | - Zhengshu Que
- Department of Clinical Laboratory, The Fourth Hospital of Changsha, Changsha, 410006, Hunan, China
| | - Ying Xu
- Department of Clinical Laboratory, The Fourth Hospital of Changsha, Changsha, 410006, Hunan, China
| | - Zhiqiang Wu
- Department of Dermatology, The Fourth Hospital of Changsha, No.70, Lushan Road, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
5
|
Ju Y, Zhang F, Yu P, Zhang Y, Zhao P, Xu P, Sun L, Bao Y, Long H. A Bibliometric Analysis of Research on Bacterial Persisters. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4302914. [PMID: 36644164 PMCID: PMC9839416 DOI: 10.1155/2023/4302914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND In the past two decades, the surge of research on bacterial persisters has been inspired as increasingly concerning about the frequent failure of antibiotics treatment. This study was aimed at presenting a bibliometric and visualized analysis of relative publications on bacterial persisters, which offered insights into the development and research trends of this field. METHODS The Web of Science Core Collection and Ovid MEDLINE databases were utilized to retrieve relevant publications on bacterial persisters from 2001 to 2021. After manual selection, data including titles, authors, journals, author keywords, addresses, the number of citations, and publication years were subsequently extracted. The data analysis and visual mapping were conducted with Excel, SPSS, R studio, and VOSviewer. RESULTS In this study, 1,903 relevant publications on bacterial persisters were included. During 2001-2021, there was an exponential growth in the quantity of publications. It was found that these studies were conducted by 7,182 authors from 74 different countries. The USA led the scientific production with the highest total number of publications (859) and citation frequency (52,022). The Antimicrobial Agents and Chemotherapy was the most influential journal with 113 relevant publications. The cooccurrence analysis revealed that studies on bacterial persisters focused on four aspects: "the role of persisters in biofilms," "clinical persistent infection," "anti-persister treatment," and "mechanism of persister formation." CONCLUSION In the past two decades, the global field of bacterial persisters has significantly increased. The USA was the leading country in this field. Mechanistic studies continued to be the future hotspots, which may be helpful to adopt new strategies against persisters and solve the problem of chronic infection in the clinic.
Collapse
Affiliation(s)
- Yuan Ju
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Fang Zhang
- Department of Pharmacy, The Air Force Hospital of Western Theater Command, Chengdu, China
| | - Pingjing Yu
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Yu Zhang
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Ping Zhao
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Ping Xu
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Luwei Sun
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Yongqing Bao
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Haiyue Long
- Sichuan University Library, Sichuan University, Chengdu, China
- Department of Pharmacy, The Air Force Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
6
|
PurN Is Involved in Antibiotic Tolerance and Virulence in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121702. [PMID: 36551359 PMCID: PMC9774800 DOI: 10.3390/antibiotics11121702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus can cause chronic infections which are closely related to persister formation. Purine metabolism is involved in S. aureus persister formation, and purN, encoding phosphoribosylglycinamide formyltransferase, is an important gene in the purine metabolism process. In this study, we generated a ΔpurN mutant of the S. aureus Newman strain and assessed its roles in antibiotic tolerance and virulence. The ΔpurN in the late exponential phase had a significant defect in persistence to antibiotics. Complementation of the ΔpurN restored its tolerance to different antibiotics. PurN significantly affected virulence gene expression, hemolytic ability, and biofilm formation in S. aureus. Moreover, the LD50 (3.28 × 1010 CFU/mL) of the ΔpurN for BALB/c mice was significantly higher than that of the parental strain (2.81 × 109 CFU/mL). Transcriptome analysis revealed that 58 genes that were involved in purine metabolism, alanine, aspartate, glutamate metabolism, and 2-oxocarboxylic acid metabolism, etc., were downregulated, while 24 genes involved in ABC transporter and transferase activity were upregulated in ΔpurN vs. parental strain. Protein-protein interaction network showed that there was a close relationship between PurN and GltB, and SaeRS. The study demonstrated that PurN participates in the formation of the late exponential phase S. aureus persisters via GltB and regulates its virulence by activating the SaeRS two-component system.
Collapse
|
7
|
Yee R, Yuan Y, Tarff A, Brayton C, Gour N, Feng J, Zhang Y. Eradication of Staphylococcus aureus Biofilm Infection by Persister Drug Combination. Antibiotics (Basel) 2022; 11:1278. [PMID: 36289936 PMCID: PMC9598165 DOI: 10.3390/antibiotics11101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus can cause a variety of infections, including persistent biofilm infections, which are difficult to eradicate with current antibiotic treatments. Here, we demonstrate that combining drugs that have robust anti-persister activity, such as clinafloxacin or oritavancin, in combination with drugs that have high activity against growing bacteria, such as vancomycin or meropenem, could completely eradicate S. aureus biofilm bacteria in vitro. In contrast, single or two drugs, including the current treatment doxycycline plus rifampin for persistent S. aureus infection, failed to kill all biofilm bacteria in vitro. In a chronic persistent skin infection mouse model, we showed that the drug combination clinafloxacin + meropenem + daptomycin which killed all biofilm bacteria in vitro completely eradicated S. aureus biofilm infection in mice while the current treatments failed to do so. The complete eradication of biofilm bacteria is attributed to the unique high anti-persister activity of clinafloxacin, which could not be replaced by other fluoroquinolones including moxifloxacin, levofloxacin, or ciprofloxacin. We also compared our persister drug combination with the current approaches for treating persistent infections, including gentamicin + fructose and ADEP4 + rifampin in the S. aureus biofilm infection mouse model, and found neither treatment could eradicate the biofilm infection. Our study demonstrates an important treatment principle, the Yin-Yang model, for persistent infections by targeting both growing and non-growing heterogeneous bacterial populations, utilizing persister drugs for the more effective eradication of persistent and biofilm infections. Our findings have implications for the improved treatment of other persistent and biofilm infections in general.
Collapse
Affiliation(s)
- Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuting Yuan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andreina Tarff
- Department of Graduate Medical Education, Louis A. Weiss Memorial Hospital, Chicago, IL 60640, USA
| | - Cory Brayton
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Naina Gour
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Feng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
8
|
G C B, Sahukhal GS, Elasri MO. Delineating the Role of the msaABCR Operon in Staphylococcal Overflow Metabolism. Front Microbiol 2022; 13:914512. [PMID: 35722290 PMCID: PMC9204165 DOI: 10.3389/fmicb.2022.914512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that can infect almost every organ system, resulting in a high incidence of morbidity and mortality. The msaABCR operon is an important regulator of several staphylococcal phenotypes, including biofilm development, cell wall crosslinking, antibiotic resistance, oxidative stress, and acute and chronic implant-associated osteomyelitis. Our previous study showed that, by modulating murein hydrolase activity, the msaABCR operon negatively regulates the proteases that govern cell death. Here, we report further elucidation of the mechanism of cell death, which is regulated by the msaABCR operon at the molecular level in the USA300 LAC strain. We showed that deletion of msaABCR enhances weak-acid-dependent cell death, because, in the biofilm microenvironment, this mutant strain consumes glucose and produces acetate and acetoin at higher rates than wild-type USA300 LAC strain. We proposed the increased intracellular acidification leads to increased cell death. MsaB, a dual-function transcription factor and RNA chaperone, is a negative regulator of the cidR regulon, which has been shown to play an important role in overflow metabolism and programmed cell death during biofilm development in S. aureus. We found that MsaB binds directly to the cidR promoter, which represses expression of the cidR regulon and prevents transcription of the cidABC and alsSD operons. In addition, we observed that pyruvate induced expression of the msaABCR operon (MsaB). The results reported here have enabled us to decipher the role of the msaABCR operon in staphylococcal metabolic adaption during biofilm development.
Collapse
Affiliation(s)
- Bibek G C
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Gyan S. Sahukhal,
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
9
|
Impact of Bicarbonate-β-Lactam Exposures on Methicillin-Resistant Staphylococcus aureus (MRSA) Gene Expression in Bicarbonate-β-Lactam-Responsive vs. Non-Responsive Strains. Genes (Basel) 2021; 12:genes12111650. [PMID: 34828256 PMCID: PMC8619011 DOI: 10.3390/genes12111650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections represent a difficult clinical treatment issue. Recently, a novel phenotype was discovered amongst selected MRSA which exhibited enhanced β-lactam susceptibility in vitro in the presence of NaHCO3 (termed ‘NaHCO3-responsiveness’). This increased β-lactam susceptibility phenotype has been verified in both ex vivo and in vivo models. Mechanistic studies to-date have implicated NaHCO3-mediated repression of genes involved in the production, as well as maturation, of the alternative penicillin-binding protein (PBP) 2a, a necessary component of MRSA β-lactam resistance. Herein, we utilized RNA-sequencing (RNA-seq) to identify genes that were differentially expressed in NaHCO3-responsive (MRSA 11/11) vs. non-responsive (COL) strains, in the presence vs. absence of NaHCO3-β-lactam co-exposures. These investigations revealed that NaHCO3 selectively repressed the expression of a cadre of genes in strain 11/11 known to be a part of the sigB-sarA-agr regulon, as well as a number of genes involved in the anchoring of cell wall proteins in MRSA. Moreover, several genes related to autolysis, cell division, and cell wall biosynthesis/remodeling, were also selectively impacted by NaHCO3-OXA exposure in the NaHCO3-responsive strain MRSA 11/11. These outcomes provide an important framework for further studies to mechanistically verify the functional relevance of these genetic perturbations to the NaHCO3-responsiveness phenotype in MRSA.
Collapse
|
10
|
Hossain T, Deter HS, Peters EJ, Butzin NC. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B. iScience 2021; 24:102391. [PMID: 33997676 PMCID: PMC8091054 DOI: 10.1016/j.isci.2021.102391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is a growing problem, but bacteria can evade antibiotic treatment via tolerance and persistence. Antibiotic persisters are a small subpopulation of bacteria that tolerate antibiotics due to a physiologically dormant state. Hence, persistence is considered a major contributor to the evolution of antibiotic-resistant and relapsing infections. Here, we used the synthetically developed minimal cell Mycoplasma mycoides JCVI-Syn3B to examine essential mechanisms of antibiotic survival. The minimal cell contains only 473 genes, and most genes are essential. Its reduced complexity helps to reveal hidden phenomenon and fundamental biological principles can be explored because of less redundancy and feedback between systems compared to natural cells. We found that Syn3B evolves antibiotic resistance to different types of antibiotics expeditiously. The minimal cell also tolerates and persists against multiple antibiotics. It contains a few already identified persister-related genes, although lacking many systems previously linked to persistence (e.g. toxin-antitoxin systems, ribosome hibernation genes).
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Heather S. Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Eliza J. Peters
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| |
Collapse
|
11
|
Pandey S, Sahukhal GS, Elasri MO. The msaABCR Operon Regulates Persister Formation by Modulating Energy Metabolism in Staphylococcus aureus. Front Microbiol 2021; 12:657753. [PMID: 33936014 PMCID: PMC8079656 DOI: 10.3389/fmicb.2021.657753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes chronic, systemic infections, and the recalcitrance of these infections is mainly due to the presence of persister cells, which are a bacterial subpopulation that exhibits extreme, yet transient, antibiotic tolerance accompanied by a transient halt in growth. However, upon cessation of antibiotic treatment, a resumption in growth of persister cells causes recurrence of infections and treatment failure. Previously, we reported the involvement of msaABCR in several important staphylococcal phenotypes, including the formation of persister cells. Additionally, observations of the regulation of several metabolic genes by the msaABCR operon in transcriptomics and proteomics analyses have suggested its role in the metabolic activities of S. aureus. Given the importance of metabolism in persister formation as our starting point, in this study we demonstrated how the msaABCR operon regulates energy metabolism and subsequent antibiotic tolerance. We showed that deletion of the msaABCR operon results in increased tricarboxylic acid (TCA) cycle activity, accompanied by increased cellular ATP content and higher NADH content in S. aureus cells. We also showed that msaABCR (through MsaB) represses the ccpE and ndh2 genes, thereby regulating TCA cycle activity and the generation of membrane potential, respectively. Together, the observations from this study led to the conclusion that msaABCR operon deletion induces a metabolically hyperactive state, leading to decreased persister formation in S. aureus.
Collapse
Affiliation(s)
- Shanti Pandey
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan S Sahukhal
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mohamed O Elasri
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
12
|
Ferreira M, Pinto SN, Aires-da-Silva F, Bettencourt A, Aguiar SI, Gaspar MM. Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Staphylococcus aureus Biofilms. Pharmaceutics 2021; 13:pharmaceutics13030321. [PMID: 33801281 PMCID: PMC7999762 DOI: 10.3390/pharmaceutics13030321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilm-associated infections are a major public health concern. Current therapies are hampered by reduced penetration of antibiotics through biofilm and low accumulation levels at infected sites, requiring prolonged usage. To overcome these, repurposing antibiotics in combination with nanotechnological platforms is one of the most appealing fast-track and cost-effective approaches. In the present work, we assessed the potential therapeutic benefit of three antibiotics, vancomycin, levofloxacin and rifabutin (RFB), through their incorporation in liposomes. Free RFB displayed the utmost antibacterial effect with MIC and MBIC50 below 0.006 µg/mL towards a methicillin susceptible S. aureus (MSSA). RFB was selected for further in vitro studies and the influence of different lipid compositions on bacterial biofilm interactions was evaluated. Although positively charged RFB liposomes displayed the highest interaction with MSSA biofilms, RFB incorporated in negatively charged liposomes displayed lower MBIC50 values in comparison to the antibiotic in the free form. Preliminary safety assessment on all RFB formulations towards osteoblast and fibroblast cell lines demonstrated that a reduction on cell viability was only observed for the positively charged liposomes. Overall, negatively charged RFB liposomes are a promising approach against biofilm S. aureus infections and further in vivo studies should be performed.
Collapse
Affiliation(s)
- Magda Ferreira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sandra N. Pinto
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Frederico Aires-da-Silva
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
| | - Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sandra I. Aguiar
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
- Correspondence: (S.I.A.); (M.M.G.)
| | - Maria Manuela Gaspar
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (S.I.A.); (M.M.G.)
| |
Collapse
|
13
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
14
|
Antibiofilm effects of N,O-acetals derived from 2-amino-1,4-naphthoquinone are associated with downregulation of important global virulence regulators in methicillin-resistant Staphylococcus aureus. Sci Rep 2020; 10:19631. [PMID: 33184312 PMCID: PMC7661526 DOI: 10.1038/s41598-020-76372-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the existing antibiotics, antimicrobial resistance is a major challenge. Consequently, the development of new drugs remains in great demand. Quinones is part of a broad group of molecules that present antibacterial activity besides other biological properties. The main purpose of this study was to evaluate the antibiofilm activities of synthetic N,O-acetals derived from 2-amino-1,4-naphthoquinone [7a: 2-(methoxymethyl)-amino-1,4-naphthoquinone; 7b: 2-(ethoxymethyl)-amino-1,4-naphthoquinone; and 7c: 2-(propynyloxymethyl)-amino-1,4-naphthoquinone] against methicillin-resistant Staphylococcus aureus (MRSA). The derivatives 7b and 7c, specially 7b, caused strong impact on biofilm accumulation. This inhibition was linked to decreased expression of the genes fnbA, spa, hla and psmα3. More importantly, this downregulation was paralleled by the modulation of global virulence regulators. The substitution of 2-ethoxymethyl (7b) in comparison with 2-propynyloxymethyl (7c) enhanced sarA-agr inhibition, decreased fnbA transcripts (positively regulated by sarA) and strongly impaired biofilm accumulation. Indeed, 7b triggered intensive autolysis and was able to eliminate vancomycin-persistent cells. Consequently, 7b is a promising molecule displaying not only antimicrobial effects, but also antibiofilm and antipersistence activities. Therefore, 7b is a good candidate for further studies involving the development of novel and more rational antimicrobials able to act in chronic and recalcitrant infections, associated with biofilm formation.
Collapse
|
15
|
Sahukhal GS, Tucci M, Benghuzzi H, Wilson G, Elasri MO. The role of the msaABCR operon in implant-associated chronic osteomyelitis in Staphylococcus aureus USA300 LAC. BMC Microbiol 2020; 20:324. [PMID: 33109085 PMCID: PMC7590495 DOI: 10.1186/s12866-020-01964-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/02/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The msaABCR operon regulates several staphylococcal phenotypes such as biofilm formation, capsule production, protease production, pigmentation, antibiotic resistance, and persister cells formation. The msaABCR operon is required for maintaining the cell wall integrity via affecting peptidoglycan cross-linking. The msaABCR operon also plays a role in oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Staphylococcus aureus is the most frequent cause of chronic implant-associated osteomyelitis (OM). The CA-MRSA USA300 strains are predominant in the United States and cause severe infections, including bone and joint infections. RESULTS The USA300 LAC strain caused significant bone damage, as evidenced by the presence of severe bone necrosis with multiple foci of sequestra and large numbers of multinucleated osteoclasts. Intraosseous survival and biofilm formation on the K-wires by USA300 LAC strains was pronounced. However, the msaABCR deletion mutant was attenuated. We observed minimal bone necrosis, with no evidence of intramedullary abscess and/or fibrosis, along reduced intraosseous bacterial population and significantly less biofilm formation on the K-wires by the msaABCR mutant. microCT analysis of infected bone showed significant bone loss and damage in the USA300 LAC and complemented strain, whereas the msaABCR mutant's effect was reduced. In addition, we observed increased osteoblasts response and new bone formation around the K-wires in the bone infected by the msaABCR mutant. Whole-cell proteomics analysis of msaABCR mutant cells showed significant downregulation of proteins, cell adhesion factors, and virulence factors that interact with osteoblasts and are associated with chronic OM caused by S. aureus. CONCLUSION This study showed that deletion of msaABCR operon in USA300 LAC strain lead to defective biofilm in K-wire implants, decreased intraosseous survival, and reduced cortical bone destruction. Thus, msaABCR plays a role in implant-associated chronic osteomyelitis by regulating extracellular proteases, cell adhesions factors and virulence factors. However additional studies are required to further define the contribution of msaABCR-regulated molecules in osteomyelitis pathogenesis.
Collapse
Affiliation(s)
- Gyan S Sahukhal
- Present Address: Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406, USA.
| | - Michelle Tucci
- Department of Orthopaedics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hamed Benghuzzi
- Department of Orthopaedics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gerri Wilson
- Department of Orthopaedics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohamed O Elasri
- Present Address: Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406, USA
| |
Collapse
|
16
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Ferreira M, Aguiar S, Bettencourt A, Gaspar MM. Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors. Drug Deliv Transl Res 2020; 11:72-85. [PMID: 32514703 DOI: 10.1007/s13346-020-00791-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone infections caused by Staphylococcus aureus are a major concern in medical care, particularly when associated with orthopedic-implant devices. The ability of the bacteria to form biofilms and their capacity to invade and persist within osteoblasts turn the infection eradication into a huge challenge. The reduction of antibiotic penetration through bacterial biofilms associated with the presence of persistent cells, ability to survive in the host, and high tolerance to antibiotics are some of the reasons for the difficult treatment of these infections. Effective therapeutic approaches are urgently needed. In this sense, lipid-based nanosystems, such as liposomes, have been investigated as an innovative and alternative strategy for the treatment of implant-associated S. aureus infections, due to their preferential accumulation at infected sites and interaction with S. aureus. This review highlights the recent advances on antibiotic-loaded liposome formulations both in vitro and in vivo and how the interaction with S. aureus biofilms may be improved by modulating the liposomal external surface. Graphical Abstract.
Collapse
Affiliation(s)
- Magda Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sandra Aguiar
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
18
|
Jorge P, Magalhães AP, Grainha T, Alves D, Sousa AM, Lopes SP, Pereira MO. Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms. FEMS Microbiol Ecol 2020; 95:5532357. [PMID: 31305896 DOI: 10.1093/femsec/fiz115] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Worldwide, infections are resuming their role as highly effective killing diseases, as current treatments are failing to respond to the growing problem of antimicrobial resistance (AMR). The social and economic burden of AMR seems ever rising, with health- and research-related organizations rushing to collaborate on a worldwide scale to find effective solutions. Resistant bacteria are spreading even in first-world nations, being found not only in healthcare-related settings, but also in food and in the environment. In this minireview, the impact of AMR in healthcare systems and the major bacteria behind it are highlighted. Ecological aspects of AMR evolution and the complexity of its molecular mechanisms are explained. Major concepts, such as intrinsic, acquired and adaptive resistance, as well as tolerance and heteroresistance, are also clarified. More importantly, the problematic of biofilms and their role in AMR, namely their main resistance and tolerance mechanisms, are elucidated. Finally, some of the most promising anti-biofilm strategies being investigated are reviewed. Much is still to be done regarding the study of AMR and the discovery of new anti-biofilm strategies. Gladly, considerable research on this topic is generated every day and increasingly concerted actions are being engaged globally to try and tackle this problem.
Collapse
Affiliation(s)
- Paula Jorge
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tânia Grainha
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Alves
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana Patrícia Lopes
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Olívia Pereira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother 2020; 75:1071-1086. [PMID: 32016348 DOI: 10.1093/jac/dkz559] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing a vast array of infections with significant mortality. Its versatile physiology enables it to adapt to various environments. Specific physiological changes are thought to underlie the frequent failure of antimicrobial therapy despite susceptibility in standard microbiological assays. Bacteria capable of surviving high antibiotic concentrations despite having a genetically susceptible background are described as 'antibiotic tolerant'. In this review, we put current knowledge on environmental triggers and molecular mechanisms of increased antibiotic survival of S. aureus into its clinical context. We discuss animal and clinical evidence of its significance and outline strategies to overcome infections with antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Richard Kuehl
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Laura Morata
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Sylvain Meylan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Division de Maladies Infectieuses, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Josep Mensa
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alex Soriano
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
20
|
Role of antibiotic stress in phenotypic switching to persister cells of antibiotic-resistant Staphylococcus aureus. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01552-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Purpose
This study was designed to evaluate phenotypic and genotypic properties of persister cells formed by Staphylococcus aureus ATCC 15564 (SAWT), oxacillin-induced S. aureus (SAOXA), ciprofloxacin-induced S. aureus (SACIP), and clinically isolated multidrug-resistant S. aureus CCARM 3080 (SAMDR).
Methods
The dose-dependent biphasic killing patterns were observed for SAWT, SAOXA, SACIP, and SAMDR in response to twofold minimum inhibitory concentrate (MIC) of ciprofloxacin. The surviving cells of SAWT, SAOXA, SACIP, and SAMDR after twofold MIC of ciprofloxacin treatment were analyzed using a metabolic-based assay to estimate the fractions of persister cells.
Results
The least persister formation was induced in SACIP after twofold MIC of ciprofloxacin treatment, showing 58% of persistence. The lowest fitness cost of resistance was observed for the recovered persister cells of SACIP (relative fitness = 0.95), followed by SAMDR (relative fitness = 0.70), while the highest fitness cost was observed for SAWT (relative fitness = 0.26). The mRNA transcripts were analyzed by RT-PCR assay in recovered persister cells pre-incubated with ciprofloxacin. The highest expression levels of stress-related genes (dnaK and groEL) and efflux pump-related genes (mepR, norA, and norB) were observed in the recovered persister cells of SAOXA and SAMDR.
Conclusion
This study provides valuable information for understanding crosstalk between antibiotic resistance, tolerance, and persistence in different antibiotic-resistant S. aureus strains.
Collapse
|
21
|
The msaABCR Operon Regulates the Response to Oxidative Stress in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00417-19. [PMID: 31427392 DOI: 10.1128/jb.00417-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus has evolved a complex regulatory network that controls a multitude of defense mechanisms against the deleterious effects of oxidative stress stimuli, subsequently leading to the pathogen's survival and persistence in the hosts. Previously, we characterized the msaABCR operon as a regulator of virulence, antibiotic resistance, and the formation of persister cells in S. aureus Deletion of the msaABCR operon resulted in the downregulation of several genes involved in resistance against oxidative stress. Notably, those included carotenoid biosynthetic genes and the ohr gene, which is involved in resistance against organic hydroperoxides. These findings led us to hypothesize that the msaABCR operon is involved in resisting oxidative stress generated in the presence of both H2O2 and organic hydroperoxides. Here, we report that a protein product of the msaABCR operon (MsaB) transcriptionally regulates the expression of the crtOPQMN operon and the ohr gene to resist in vitro oxidative stresses. In addition to its direct regulation of the crtOPQMN operon and ohr gene, we also show that MsaB is the transcriptional repressor of sarZ (repressor of ohr). Taken together, these results suggest that the msaABCR operon regulates an oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Moving forward, we plan to investigate the role of msaABCR in the persistence of S. aureus under in vivo conditions.IMPORTANCE This study shows the involvement of the msaABCR operon in resisting oxidative stress by Staphylococcus aureus generated under in vitro and ex vivo conditions. We show that MsaB regulates the expression and production of a carotenoid pigment, staphyloxanthin, which is a potent antioxidant in S. aureus We also demonstrate that MsaB regulates the ohr gene, which is involved in defending against oxidative stress generated by organic hydroperoxides. This study highlights the importance of msaABCR in the survival of S. aureus in the presence of various environmental stimuli that mainly exert oxidative stress. The findings from this study indicate the possibility that msaABCR is involved in the persistence of staphylococcal infections and therefore could be a potential antimicrobial target to overcome recalcitrant staphylococcal infections.
Collapse
|
22
|
G C B, Sahukhal GS, Elasri MO. Role of the msaABCR Operon in Cell Wall Biosynthesis, Autolysis, Integrity, and Antibiotic Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:e00680-19. [PMID: 31307991 PMCID: PMC6761503 DOI: 10.1128/aac.00680-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as β-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the β-lactams.
Collapse
Affiliation(s)
- Bibek G C
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gyan S Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mohamed O Elasri
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
23
|
A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:16529-16534. [PMID: 31358625 DOI: 10.1073/pnas.1904700116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Treatment of Staphylococcus aureus infections is complicated by the development of antibiotic tolerance, a consequence of the ability of S. aureus to enter into a nongrowing, dormant state in which the organisms are referred to as persisters. We report that the clinically approved anthelmintic agent bithionol kills methicillin-resistant S. aureus (MRSA) persister cells, which correlates with its ability to disrupt the integrity of Gram-positive bacterial membranes. Critically, bithionol exhibits significant selectivity for bacterial compared with mammalian cell membranes. All-atom molecular dynamics (MD) simulations demonstrate that the selectivity of bithionol for bacterial membranes correlates with its ability to penetrate and embed in bacterial-mimic lipid bilayers, but not in cholesterol-rich mammalian-mimic lipid bilayers. In addition to causing rapid membrane permeabilization, the insertion of bithionol increases membrane fluidity. By using bithionol and nTZDpa (another membrane-active antimicrobial agent), as well as analogs of these compounds, we show that the activity of membrane-active compounds against MRSA persisters positively correlates with their ability to increase membrane fluidity, thereby establishing an accurate biophysical indicator for estimating antipersister potency. Finally, we demonstrate that, in combination with gentamicin, bithionol effectively reduces bacterial burdens in a mouse model of chronic deep-seated MRSA infection. This work highlights the potential repurposing of bithionol as an antipersister therapeutic agent.
Collapse
|
24
|
Sierra R, Viollier P, Renzoni A. Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:742-751. [PMID: 30056132 DOI: 10.1016/j.bbagrm.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Toxin-antitoxin systems (TAS) are genetic modules controlling different aspects of bacterial physiology. They operate with versatility in an incredibly wide range of mechanisms. New TA modules with unexpected functions are continuously emerging from genome sequencing projects. Their discovery and functional studies have shed light on different characteristics of bacterial metabolism that are now applied to understanding clinically relevant questions and even proposed as antimicrobial treatment. Our main source of knowledge of TA systems derives from Gram-negative bacterial studies, but studies in Gram-positives are becoming more prevalent and provide new insights to TA functional mechanisms. In this review, we present an overview of the present knowledge of TA systems in the clinical pathogen Staphylococcus aureus, their implications in bacterial physiology and discuss relevant aspects that are driving TAS research. "This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier".
Collapse
Affiliation(s)
- Roberto Sierra
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Adriana Renzoni
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland.
| |
Collapse
|