1
|
Liu Q, Zhao W, Li W, Zhang F, Wang Y, Wang J, Gao Y, Liu H, Zhang L. Lipopeptides from Bacillus velezensis ZLP-101 and their mode of action against bean aphids Acyrthosiphon pisum Harris. BMC Microbiol 2024; 24:231. [PMID: 38951812 PMCID: PMC11218388 DOI: 10.1186/s12866-024-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.
Collapse
Affiliation(s)
- Qiuyue Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Wenya Li
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Feiyan Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Jiangping Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Yumeng Gao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China.
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China.
| |
Collapse
|
2
|
Yin Y, Wang X, Zhang P, Wang P, Wen J. Strategies for improving fengycin production: a review. Microb Cell Fact 2024; 23:144. [PMID: 38773450 PMCID: PMC11110267 DOI: 10.1186/s12934-024-02425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Coll Biol & Pharmaceut Sci, China Three Gorges Univ, Yichang, 443002, P. R. China
| | - Pengsheng Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Pan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Wang J, Ping Y, Liu W, He X, Du C. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and comA genes. Prep Biochem Biotechnol 2024; 54:184-192. [PMID: 37158496 DOI: 10.1080/10826068.2023.2209890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacillus subtilis HNDF2-3 can produce a variety of lipopeptide antibiotics with lower production. To improve its lipopeptide production, three genetically engineered strains were constructed. The results of real-time PCR showed that the highest transcriptional levels of the sfp gene in F2-3sfp, F2-3comA and F2-3sfp-comA were 29.01, 6.65 and 17.50 times of the original strain, respectively, while the highest transcriptional levels of the comA gene in F2-3comA and F2-3sfp-comA were 10.44 and 4.13 times of the original strain, respectively. The results of ELISA showed that the malonyl-CoA transacylase activity of F2-3comA was the highest, reaching 18.53 IU/L at 24 h, the data was 32.74% higher than that of the original strain. The highest total lipopeptide production of F2-3sfp, F2-3comA and F2-3sfp-comA induced by IPTG at optimal concentration were 33.51, 46.05 and 38.96% higher than that of the original strain, respectively. The results of HPLC showed that iturin A production of F2-3sfp-comA was the highest, which was 63.16% higher than that of the original strain. This study laid the foundation for further construction of genetically engineered strains with high lipopeptide production.
Collapse
Affiliation(s)
- Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
4
|
Shen Y, Yang H, Lin Z, Chu L, Pan X, Wang Y, Liu W, Jin P, Miao W. Screening of compound-formulated Bacillus and its effect on plant growth promotion. FRONTIERS IN PLANT SCIENCE 2023; 14:1174583. [PMID: 37235009 PMCID: PMC10208273 DOI: 10.3389/fpls.2023.1174583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Bacillus bacteria can produce abundant secondary metabolites that are useful for biocontrol, especially in maintaining plant root microecology, and for plant protection. In this study, we determine the indicators of six Bacillus strains for colonization, promotion of plant growth, antimicrobial activity, and other aspects, with the aim of obtaining a compound bacteriological agent to construct a beneficial Bacillus microbial community in plant roots. We found that there was no significant difference in the growth curves of the six Bacillus strains over 12 h. However, strain HN-2 was found to have the strongest swimming ability and the highest bacteriostatic effect of n-butanol extract on the blight-causing bacteria Xanthomonas oryzae pv. oryzicola. The hemolytic circle produced by the n-butanol extract of strain FZB42 was the largest (8.67 ± 0.13 mm) and had the greatest bacteriostatic effect on the fungal pathogen Colletotrichum gloeosporioides, with a bacteriostatic circle diameter of 21.74 ± 0.40 mm. Strains HN-2 and FZB42 can rapidly form biofilms. Time-of-flight mass spectrometry and hemolytic plate tests showed that strains HN-2 and FZB42 may have significantly different activities because of their ability to produce large quantities of lipopeptides (i.e., surfactin, iturin, and fengycin). Different growth-promoting experiments revealed that the strains FZB42, HN-2, HAB-2, and HAB-5 had better growth-promoting potential than the control, and therefore these four strains were compounded in an equal ratio and used to treat pepper seedlings through root irrigation. We found an increase in the stem thickness (13%), leaf dry weight (14%), leaf number (26%), and chlorophyll content (41%) of pepper seedlings treated with the composite-formulated bacterial solution compared to the optimal single-bacterial solution treatment. Furthermore, several of these indicators increased by an average of 30% in the composite solution-treated pepper seedlings compared with the control water treatment group. In conclusion, the composite solution obtained by compounding strains FZB42 (OD600 = 1.2), HN-2 (OD600 = 0.9), HAB-2 (OD600 = 0.9), and HAB-5 (OD600 = 1.2) in equal parts highlights the advantages of a single bacterial solution, which includes achieving good growth promotion and antagonistic effects against pathogenic bacteria. The promotion of this compound-formulated Bacillus can reduce the application of chemical pesticides and fertilizers; promote plant growth and development; avoid the imbalances of soil microbial communities and thus reduce the risk of plant disease; and provide an experimental basis for the production and application of various types of biological control preparations in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pengfei Jin
- *Correspondence: Pengfei Jin, ; Weiguo Miao,
| | - Weiguo Miao
- *Correspondence: Pengfei Jin, ; Weiguo Miao,
| |
Collapse
|
5
|
Luan P, Yi Y, Huang Y, Cui L, Hou Z, Zhu L, Ren X, Jia S, Liu Y. Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front Microbiol 2023; 14:1149363. [PMID: 37125175 PMCID: PMC10135310 DOI: 10.3389/fmicb.2023.1149363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.
Collapse
Affiliation(s)
- Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
- *Correspondence: Yanjie Yi,
| | - Yifan Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Liuqing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lijuan Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xiujuan Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Shao Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
6
|
Huang X, Tang Q, Li Q, Lin H, Li J, Zhu M, Liu Z, Wang K. Integrative analysis of transcriptome and metabolome reveals the mechanism of foliar application of Bacillus amyloliquefaciens to improve summer tea quality (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:302-313. [PMID: 35728422 DOI: 10.1016/j.plaphy.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Bacillus amyloliquefaciens is a promising microbial agent for quality improvement in crops; however, the effects of B. amyloliquefaciens biofertilizers on tea leaf metabolites are relatively unknown. Herein, a combination of metabolome profiling and transcriptome analysis was employed to investigate the effects of foliar spraying with B. amyloliquefaciens biofertilizers on tea leaf quality. The tea polyphenol to amino acid ratio (TP/AA), catechin, and caffeine levels decreased, but theanine level increased in tea leaves after foliar spraying with B. amyloliquefaciens. The differentially accumulated metabolites included flavonoids, phenolic acids, organic acids, amino acids, and carbohydrates. The decrease in catechin was correlated with the catechin/flavonoid biosynthesis pathway. The AMPD gene was highly associated with caffeine content, while the GOGAT gene was associated with theanine accumulation. Foliar spraying with B. amyloliquefaciens biofertilizers may improve summer tea quality. Our findings provide a basis for the application of B. amyloliquefaciens biofertilizers in tea plants and new insights on summer tea leaf resource utilization.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Qian Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Xu P, Xie S, Liu W, Jin P, Wei D, Yaseen DG, Wang Y, Miao W. Comparative Genomics Analysis Provides New Strategies for Bacteriostatic Ability of Bacillus velezensis HAB-2. Front Microbiol 2020; 11:594079. [PMID: 33281792 PMCID: PMC7705179 DOI: 10.3389/fmicb.2020.594079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
Biocontrol formulations prepared from biocontrol bacteria are increasingly applied in sustainable agriculture. Notably, inoculants prepared from Bacillus strains have been proven efficient and environmentally friendly alternatives to chemical bactericides. The bacterium Bacillus velezensis HAB-2 (formerly classified as B. amyloliquefaciens HAB-2) is used as a biological control agent in agricultural fields. In this study, we reported a high-quality genome sequence of HAB-2 using third-generation sequencing technology (PacBio RS II). The 3.89 Mb genome encoded 3,820 predicted genes. Comparative analysis among the genome sequences of reference strains B. velezensis FZB42, B. amyloliquefaciens DSM7 and B. subtilis 168 with the HAB-2 genome revealed obvious differences in the variable part of the genomes, while the core genome shared by FZB42 and HAB-2 was similar (96.14%). However, there were differences in the prophage region among the four strains. The numbers of prophage regions and coding genes in HAB-2 and FZB42 were smaller than the other two strains. The HAB-2 genome showed superior ability to produce secondary metabolites and harbored 13 gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Furthermore, there were two unique clusters: one cluster which encoded lanthipeptide was involved in mersacidin synthesis and another cluster which encoded ladderane was shown to direct an unknown compound. Multidomain enzymes, such as non-ribosomal peptide synthetase and polyketide synthase, control the biosynthesis of secondary metabolites and rely on 4'-phosphopantetheinyl transferases (PPTases). Key genes lpaH2 and a encoded PPTases in HAB-2 encoded 224 and 120 amino acids, respectively. The genomic features revealed that HAB-2 possesses immense potential to synthesize antimicrobial acting secondary metabolites by regulating and controlling gene clusters. The prophage regions and genes encoding PPTases may provide novel insight for the bacteriostatic mechanism of Bacillus in the biological control of plant diseases.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shangqian Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- College of Forestry, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Pengfei Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dandan Wei
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dahar Ghulam Yaseen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yu Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
8
|
Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. BMC Genomics 2020; 21:767. [PMID: 33153447 PMCID: PMC7643408 DOI: 10.1186/s12864-020-07160-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background Bacillus subtilis strain NCD-2 is an excellent biocontrol agent against plant soil-borne diseases and shows broad-spectrum antifungal activities. This study aimed to explore some secondary metabolite biosynthetic gene clusters and related antimicrobial compounds in strain NCD-2. An integrative approach combining genome mining and structural identification technologies using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-MS/MS), was adopted to interpret the chemical origins of metabolites with significant biological activities. Results Genome mining revealed nine gene clusters encoding secondary metabolites with predicted functions, including fengycin, surfactin, bacillaene, subtilosin, bacillibactin, bacilysin and three unknown products. Fengycin, surfactin, bacillaene and bacillibactin were successfully detected from the fermentation broth of strain NCD-2 by UHPLC-QTOF-MS/MS. The biosynthetic gene clusters of bacillaene, subtilosin, bacillibactin, and bacilysin showed 100% amino acid sequence identities with those in B. velezensis strain FZB42, whereas the identities of the surfactin and fengycin gene clusters were only 83 and 92%, respectively. Further comparison revealed that strain NCD-2 had lost the fenC and fenD genes in the fengycin biosynthetic operon. The biosynthetic enzyme-related gene srfAB for surfactin was divided into two parts. Bioinformatics analysis suggested that FenE in strain NCD-2 had a similar function to FenE and FenC in strain FZB42, and that FenA in strain NCD-2 had a similar function to FenA and FenD in strain FZB42. Five different kinds of fengycins, with 26 homologs, and surfactin, with 4 homologs, were detected from strain NCD-2. To the best of our knowledge, this is the first report of a non-typical gene cluster related to fengycin synthesis. Conclusions Our study revealed a number of gene clusters encoding antimicrobial compounds in the genome of strain NCD-2, including a fengycin synthetic gene cluster that might be unique by using genome mining and UHPLC–QTOF–MS/MS. The production of fengycin, surfactin, bacillaene and bacillibactin might explain the biological activities of strain NCD-2. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07160-2.
Collapse
|
9
|
Mechanism of Antibacterial Activity of Bacillus amyloliquefaciens C-1 Lipopeptide toward Anaerobic Clostridium difficile. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3104613. [PMID: 32190658 PMCID: PMC7073505 DOI: 10.1155/2020/3104613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Probiotics may offer an attractive alternative for standard antibiotic therapy to treat Clostridium difficile infections (CDI). In this study, the antibacterial mechanism in vitro of newly isolated B. amyloliquefaciens C-1 against C. difficile was investigated. The lipopeptides surfactin, iturin, and fengycin produced by C-1 strongly inhibited C. difficile growth and viability. Systematic research of the bacteriostatic mechanism showed that the C-1 lipopeptides damage the integrity of the C. difficile cell wall and cell membrane. In addition, the lipopeptide binds to C. difficile genomic DNA, leading to cell death. Genome resequencing revealed many important antimicrobial compound-encoding clusters, including six nonribosomal peptides (surfactins (srfABCD), iturins (ituABCD), fengycins (fenABCDE), bacillibactin (bmyABC), teichuronic, and bacilysin) and three polyketides (bacillaene (baeEDLMNJRS), difficidin (difABCDEFGHIJ), and macrolactin (mlnABCDEFGHI)). In addition, there were other beneficial genes, such as phospholipase and seven siderophore biosynthesis gene clusters, which may contribute synergistically to the antibacterial activity of B. amyloliquefaciens C-1. We suggest that proper application of antimicrobial peptides may be effective in C. difficile control.
Collapse
|