1
|
Wang SY, Zhang YJ, Chen LX, Pang YB, Herrera-Balandrano DD, Daly P, Liu FQ, Simões MF, Shi XC, Laborda P. Discovery of the dipicolinic acid synthase in the spoilage fungus Paecilomyces reveals its role in spore heat, salt, and alkaline pH resistance. Food Res Int 2025; 205:115994. [PMID: 40032478 DOI: 10.1016/j.foodres.2025.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Paecilomyces, a food spoilage fungus, releases airborne spores that are highly resistant to harsh environmental conditions, including pasteurization. In this study, dipicolinic acid (DPA), which is a common component of bacterial spores, was detected in Paecilomyces maximus conidia at concentrations from 0.1 % to 2.8 % w/w (DPA weight per spore weight). The DPA synthase (PmDpa) was identified and obtained through heterologous expression in Escherichia coli. The enzyme was iron-dependent and catalyzed the conversion of L-2,3-dihydrodipicolinate (DHD) into DPA in the presence of NAD+. Mutant Δpmdpa spores exhibited altered morphology and reduced resistance to heat, salinity, and alkaline pH compared to wild-type spores, indicating that PmDpa plays a key role in the structure and environmental tolerance of P. maximus spores. DPA was identified in the spores of several Paecilomyces, Aspergillus, and Penicillium strains, indicating its prevalence in the conidia of Thermoascaceae and Aspergillaceae (Eurotiales). This study identifies DPA in Eurotiales spores for the first time and highlights the first key gene associated with Paecilomyces spore resistance.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Li-Xiao Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Feng-Quan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Marta Filipa Simões
- Macau University of Science and Technology, State Key Laboratory of Lunar and Planetary Sciences, Taipa, Macau SAR, China; China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
2
|
Fernandes LB, D'Souza JS, Prasad TSK, Ghag SB. Isolation and characterization of extracellular vesicles from Fusarium oxysporum f. sp. cubense, a banana wilt pathogen. Biochim Biophys Acta Gen Subj 2023; 1867:130382. [PMID: 37207907 DOI: 10.1016/j.bbagen.2023.130382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Fusarium wilt of banana is a destructive widespread disease caused by Fusarium oxysporum f. sp. cubense (Foc) that ravaged banana plantations globally, incurring huge economic losses. Current knowledge demonstrates the involvement of several transcription factors, effector proteins, and small RNAs in the Foc-banana interaction. However, the precise mode of communication at the interface remains elusive. Cutting-edge research has emphasized the significance of extracellular vesicles (EVs) in trafficking the virulent factors modulating the host physiology and defence system. EVs are ubiquitous inter- and intra-cellular communicators across kingdoms. This study focuses on the isolation and characterization of Foc EVs from methods that make use of sodium acetate, polyethylene glycol, ethyl acetate, and high-speed centrifugation. Isolated EVs were microscopically visualized using Nile red staining. Further, the EVs were characterized using transmission electron microscopy, which revealed the presence of spherical, double-membrane, vesicular structures ranging in size from 50 to 200 nm (diameter). The size was also determined using the principle based on Dynamic Light Scattering. The Foc EVs contained proteins that were separated using SDS-PAGE and ranged between 10 and 315 kDa. Mass spectrometry analysis revealed the presence of EV-specific marker proteins, toxic peptides, and effectors. The Foc EVs were found to be cytotoxic, whose toxicity increased with EVs isolated from the co-culture preparation. Taken together, a better understanding of Foc EVs and their cargo will aid in deciphering the molecular crosstalk between banana and Foc.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
3
|
Gene complementation strategies for filamentous fungi biotechnology. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Maccaro JJ, Moreira Salgado JF, Klinger E, Argueta Guzmán MP, Ngor L, Stajich JE, McFrederick QS. Comparative genomics reveals that metabolism underlies evolution of entomopathogenicity in bee-loving Ascosphaera spp. fungi. J Invertebr Pathol 2022; 194:107804. [PMID: 35933037 PMCID: PMC10793876 DOI: 10.1016/j.jip.2022.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found in association with bee nests and comprises both saprophytic and entomopathogenic species. To date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a genomic understanding of how pathogenesis evolved more broadly in the genus. To address this gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison of the assembled genomes was carried out, including the previously published genome of A. apis. To identify candidate virulence genes in the pathogenic species, we performed secondary metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we captured single copy orthologs to infer their phylogeny and created codon-aware alignments to determine orthologs under selective pressure in our pathogenic species. Our results show several shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related genes present in the bee pathogens and commensals. Genes involved in metabolism and protein processing exhibit signatures of enrichment and positive selection under a fitted branch-site model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, we discuss the importance of such genes in other fungal pathogens, suggesting a common route to evolution of pathogenicity in Ascosphaera.
Collapse
Affiliation(s)
- J J Maccaro
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - J F Moreira Salgado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brazil; Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - E Klinger
- Department of Entomology, The Ohio State University, Columbus, OH, USA; USDA-ARS Pollinating Insect Biology Management Systematics Research Unit, Logan, UT, USA
| | - M P Argueta Guzmán
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - L Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - J E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA.
| | - Q S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Havenga M, Wingfield BD, Wingfield MJ, Dreyer LL, Roets F, Aylward J. Genetic response to nitrogen starvation in the aggressive Eucalyptus foliar pathogen Teratosphaeria destructans. Curr Genet 2021; 67:981-990. [PMID: 34432124 DOI: 10.1007/s00294-021-01208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022]
Abstract
Teratosphaeria destructans is one of the most aggressive foliar pathogens of Eucalyptus. The biological factors underpinning T. destructans infections, which include shoot and leaf blight on young trees, have never been interrogated. Thus, the means by which the pathogen modifies its host environment to overcome host defences remain unknown. By applying transcriptome sequencing, the aim of this study was to compare gene expression in a South African isolate of T. destructans grown on nitrogen-deficient and complete media. This made it possible to identify upregulated genes in a nitrogen-starved environment, often linked to the pathogenicity of the fungus. The results support the hypothesis that nitrogen starvation in T. destructans likely mirrors an in planta genetic response. This is because 45% of genes that were highly upregulated under nitrogen starvation have previously been reported to be associated with infection in other pathogen systems. These included several CAZymes, fungal effector proteins, peptidases, kinases, toxins, lipases and proteins associated with detoxification of toxic compounds. Twenty-five secondary metabolites were identified and expressed in both nitrogen-deficient and complete conditions. Additionally, the most highly expressed genes in both growth conditions had pathogenicity-related functions. This study highlights the large number of expressed genes associated with pathogenicity and overcoming plant defences. As such, the generated baseline knowledge regarding pathogenicity and aggressiveness in T. destructans is a valuable reference for future in planta work.
Collapse
Affiliation(s)
- Minette Havenga
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. .,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Studying the Gene Expression of Penicillium rubens Under the Effect of Eight Essential Oils. Antibiotics (Basel) 2020; 9:antibiotics9060343. [PMID: 32575356 PMCID: PMC7345231 DOI: 10.3390/antibiotics9060343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Essential oils (EOs) are well-known for their beneficial properties against a broad range of microorganisms. For the better understanding of their mechanism of action in fungi, a microarray approach was used in order to evaluate the gene expression of Penicillium chrysogenum (recently renamed P. rubens) exposed to the indirect contact (vapors) of eight EOs. The selection of assayed EOs was based on their antifungal activity. The extraction of RNA and the microarray hybridization procedure were optimized for the analysis of P. rubens. Gene ontology annotation was performed to investigate the functional analysis of the genes. To uncover the metabolic pathway of these differentially expressed genes, they were mapped into the KEGG BRITE pathway database. The transcriptomic analysis showed that, from a total of 12,675 genes, only 551 genes are annotated, and the other 12,124 genes encoded hypothetical proteins. Further bioinformatic analysis demonstrated that 1350 genes were upregulated and 765 downregulated at least with half (four) of the utilizing EOs. A microarray investigation has confirmed the main impact of EOs to metabolic processes in P. rubens involved in vital functions. Presumably, this is the first time that a microarray hybridization analysis was performed in order to evaluate the gene expression of P. rubens exposed to various EOs.
Collapse
|
7
|
Christoff RM, Gardhi CK, Soares da Costa TP, Perugini MA, Abbott BM. Pursuing DHDPS: an enzyme of unrealised potential as a novel antibacterial target. MEDCHEMCOMM 2019. [DOI: 10.1039/c9md00107g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DHDPS represents a novel enzyme target for the development of new antibiotics to combat multidrug resistance.
Collapse
Affiliation(s)
- Rebecca M. Christoff
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Chamodi K. Gardhi
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Tatiana P. Soares da Costa
- Department of Biochemistry and Genetics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Belinda M. Abbott
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|