1
|
Cuomo P, Medaglia C, Casillo A, Gentile A, Fruggiero C, Corsaro MM, Capparelli R. Phage-resistance alters Lipid A reactogenicity: a new strategy for LPS-based conjugate vaccines against Salmonella Rissen. Front Immunol 2024; 15:1450600. [PMID: 39723217 PMCID: PMC11668645 DOI: 10.3389/fimmu.2024.1450600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Salmonella enterica serovar Rissen (S. Rissen) is an emerging causative agent of foodborne diseases. The current emergence of antibiotic resistance makes necessary alternative therapeutic strategies. In this study, we investigated the potential of a phage-resistant strain of S. Rissen (RR) as a tool for developing an effective lipopolysaccharide (LPS)-based vaccine. The LPS O-antigen is known to play critical roles in protective immunity against Salmonella. However, the high toxicity of the LPS lipid A moiety limits its use in vaccines. Here, we demonstrated that the acquisition of bacteriophage resistance by S. Rissen leads to structural modifications in the LPS structure. Using NMR and mass spectrometry, we characterized the LPS from phage-resistant strains as a smooth variant bearing under-acylated Lipid A portions (penta- and tetra-acylated forms). We then combined RT-qPCR and NMR-based metabolomics to explore the effects of phage resistance and LPS modification on bacterial fitness and virulence. Finally, we conducted in vivo studies to determine whether lysogeny-induced remodeling of LPS affects the host immune response. Results revealed that the under-acylated variant of LPS from RR attenuates the inflammatory response in BALB/c mice, while eliciting a specific antibody response that protects against S. Rissen (RW) infection. In conclusion, our findings suggest that phage resistance, through lipid A modification, may offer a novel strategy for reducing LPS toxicity, highlighting its potential as a promising biological approach for developing LPS-based vaccines against Salmonella infections.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Chiara Medaglia
- Functional Genomics Research Center, Fondazione Human Technopole, Milan, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Gentile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Carmine Fruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Ribeiro JM, Pereira GN, Durli Junior I, Teixeira GM, Bertozzi MM, Verri WA, Kobayashi RKT, Nakazato G. Comparative analysis of effectiveness for phage cocktail development against multiple Salmonella serovars and its biofilm control activity. Sci Rep 2023; 13:13054. [PMID: 37567926 PMCID: PMC10421930 DOI: 10.1038/s41598-023-40228-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Foodborne diseases are a major challenge in the global food industry, especially those caused by multidrug-resistant (MDR) bacteria. Bacteria capable of biofilm formation, in addition to MDR strains, reduce the treatment efficacy, posing a significant threat to bacterial control. Bacteriophages, which are viruses that infect and kill bacteria, are considered a promising alternative in combating MDR bacteria, both in human medicine and animal production. Phage cocktails, comprising multiple phages, are commonly employed to broaden the host range and prevent or delay the development of phage resistance. There are numerous techniques and protocols available to evaluate the lytic activity of bacteriophages, with the most commonly used methods being Spot Test Assays, Efficiency of Plating (EOP), and infection assays in liquid culture. However, there is currently no standardization for which analyses should be employed and the possible differences among them in order to precisely determine the host range of phages and the composition of a cocktail. A preliminary selection using the Spot Test Assay resulted in four phages for subsequent evaluation against a panel of 36 Salmonella isolates of numerous serovars. Comparing EOP and infection assays in liquid culture revealed that EOP could underestimate the lytic activity of phages, directly influencing phage cocktail development. Moreover, the phage cocktail containing the four selected phages was able to control or remove biofilms formed by 66% (23/35) of the isolates, including those exhibiting low susceptibility to phages, according to EOP. Phages were characterized genomically, revealing the absence of genes associated with antibiotic resistance, virulence factors, or integrases. According to confocal laser scanning microscopy analysis, the biofilm maturation of one Salmonella isolate, which exhibited high susceptibility to phages in liquid culture and 96-well plates biofilm viability assays but had low values for EOP, was found to be inhibited and controlled by the phage cocktail. These observations indicate that phages could control and remove Salmonella biofilms throughout their growth and maturation process, despite their low EOP values. Moreover, using infection assays in liquid culture enables a more precise study of phage interactions for cocktail design timelessly and effortlessly. Hence, integrating strategies and techniques to comprehensively assess the host range and lytic activity of bacteriophages under different conditions can demonstrate more accurately the antibacterial potential of phage cocktails.
Collapse
Affiliation(s)
- Jhonatan Macedo Ribeiro
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, PR, Brazil
| | - Giovana Nicolete Pereira
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, PR, Brazil
| | - Itamar Durli Junior
- Laboratory of Bioinformatics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, State University of Londrina, Londrina, PR, Brazil
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Bacteriophage-Resistant Salmonella rissen: An In Vitro Mitigated Inflammatory Response. Viruses 2021; 13:v13122468. [PMID: 34960737 PMCID: PMC8703591 DOI: 10.3390/v13122468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023] Open
Abstract
Non-typhoid Salmonella (NTS) represents one of the major causes of foodborne diseases, which are made worse by the increasing emergence of antibiotic resistance. Thus, NTS are a significant and common public health concern. The purpose of this study is to investigate whether selection for phage-resistance alters bacterial phenotype, making this approach suitable for candidate vaccine preparation. We therefore compared two strains of Salmonella enterica serovar Rissen: RR (the phage-resistant strain) and RW (the phage-sensitive strain) in order to investigate a potential cost associated with the bacterium virulence. We tested the ability of both RR and RW to infect phagocytic and non-phagocytic cell lines, the activity of virulence factors associated with the main Type-3 secretory system (T3SS), as well as the canonic inflammatory mediators. The mutant RR strain-compared to the wildtype RW strain-induced in the host a weaker innate immune response. We suggest that the mitigated inflammatory response very likely is due to structural modifications of the lipopolysaccharide (LPS). Our results indicate that phage-resistance might be exploited as a means for the development of LPS-based antibacterial vaccines.
Collapse
|
4
|
The Union Is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm. Microorganisms 2020; 9:microorganisms9010060. [PMID: 33379305 PMCID: PMC7824728 DOI: 10.3390/microorganisms9010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Xanthomonas campestris pv. campestris is known as the causative agent of black rot disease, which attacks mainly crucifers, severely lowering their global productivity. One of the main virulence factors of this pathogen is its capability to penetrate and form biofilm structures in the xylem vessels. The discovery of novel approaches to crop disease management is urgent and a possible treatment could be aimed at the eradication of biofilm, although anti-biofilm approaches in agricultural microbiology are still rare. Considering the multifactorial nature of biofilm, an effective approach against Xanthomonas campestris implies the use of a multi-targeted or combinatorial strategy. In this paper, an anti-biofilm strategy based on the use of fatty acids and the bacteriophage (Xccφ1)-hydroxyapatite complex was optimized against Xanthomonas campestris mature biofilm. The synergic action of these elements was demonstrated and the efficient removal of Xanthomonas campestris mature biofilm was also proven in a flow cell system, making the proposed approach an effective solution to enhance plant survival in Xanthomonas campestris infections. Moreover, the molecular mechanisms responsible for the efficacy of the proposed treatment were explored.
Collapse
|
5
|
Cuomo P, Papaianni M, Fulgione A, Guerra F, Capparelli R, Medaglia C. An Innovative Approach to Control H. pylori-Induced Persistent Inflammation and Colonization. Microorganisms 2020; 8:microorganisms8081214. [PMID: 32785064 PMCID: PMC7463796 DOI: 10.3390/microorganisms8081214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium which colonizes the human stomach. The ability of H. pylori to evade the host defense system and the emergence of antibiotic resistant strains result in bacteria persistence and chronic inflammation, which leads to both severe gastric and extra-gastric diseases. Consequently, innovative approaches able to overcome H. pylori clinical outcomes are needed. In this work, we develop a novel non-toxic therapy based on the synergistic action of H. pylori phage and lactoferrin adsorbed on hydroxyapatite nanoparticles, which effectively impairs bacteria colonization and minimizes the damage of the host pro-inflammatory response.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (P.C.); (M.P.)
| | - Marina Papaianni
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (P.C.); (M.P.)
| | - Andrea Fulgione
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Naples, Italy;
| | - Fabrizia Guerra
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (P.C.); (M.P.)
- Correspondence:
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland;
| |
Collapse
|
6
|
Antibiofilm Activity of a Trichoderma Metabolite against Xanthomonas campestris pv. campestris, Alone and in Association with a Phage. Microorganisms 2020; 8:microorganisms8050620. [PMID: 32344872 PMCID: PMC7284391 DOI: 10.3390/microorganisms8050620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Biofilm protects bacteria against the host’s immune system and adverse environmental conditions. Several studies highlight the efficacy of lytic phages in the prevention and eradication of bacterial biofilms. In this study, the lytic activity of Xccφ1 (Xanthomonas campestris pv. campestris-specific phage) was evaluated in combination with 6-pentyl-α-pyrone (a secondary metabolite produced by Trichoderma atroviride P1) and the mineral hydroxyapatite. Then, the antibiofilm activity of this interaction, called a φHA6PP complex, was investigated using confocal laser microscopy under static and dynamic conditions. Additionally, the mechanism used by the complex to modulate the genes (rpf, gumB, clp and manA) involved in the biofilm formation and stability was also studied. Our results demonstrated that Xccφ1, alone or in combination with 6PP and HA, interfered with the gene pathways involved in the formation of biofilm. This approach can be used as a model for other biofilm-producing bacteria.
Collapse
|
7
|
Papaianni M, Paris D, Woo SL, Fulgione A, Rigano MM, Parrilli E, Tutino ML, Marra R, Manganiello G, Casillo A, Limone A, Zoina A, Motta A, Lorito M, Capparelli R. Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas campestris pv. campestris Infection. Front Microbiol 2020; 11:732. [PMID: 32390981 PMCID: PMC7189621 DOI: 10.3389/fmicb.2020.00732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023] Open
Abstract
Periodic epidemics of black rot disease occur worldwide causing substantial yield losses. Xanthomonas campestris pv. campestris (Xcc) represents one of the most common bacteria able to cause the above disease in cruciferous plants such as broccoli, cabbage, cauliflower, and Arabidopsis thaliana. In agriculture, several strategies are being developed to contain the Xanthomonas infection. The use of bacteriophages could represent a valid and efficient approach to overcome this widespread phenomenon. Several studies have highlighted the potential usefulness of implementing phage therapy to control plant diseases as well as Xcc infection. In the present study, we characterized the effect of a lytic phage on the plant Brassica oleracea var. gongylodes infected with Xcc and, for the first time, the correlated plant metabolic response. The results highlighted the potential benefits of bacteriophages: reduction of bacterium proliferation, alteration of the biofilm structure and/or modulation of the plant metabolism and defense response.
Collapse
Affiliation(s)
- Marina Papaianni
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Naples, Italy
| | - Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Andrea Fulgione
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria L Tutino
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Gelsomina Manganiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Astolfo Zoina
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Bacteriophages Promote Metabolic Changes in Bacteria Biofilm. Microorganisms 2020; 8:microorganisms8040480. [PMID: 32231093 DOI: 10.3390/microorganisms8040480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria.
Collapse
|