1
|
Lidberg K, Pilheden S, Relloso Ortiz de Uriarte M, Jonsson AB. Internalization of Lactobacillus crispatus Through Caveolin-1-Mediated Endocytosis Boosts Cellular Uptake but Blocks the Transcellular Passage of Neisseria meningitidis. Microorganisms 2025; 13:479. [PMID: 40142372 PMCID: PMC11945323 DOI: 10.3390/microorganisms13030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025] Open
Abstract
Neisseria meningitidis is a human-specific pathogen that colonizes the nasopharyngeal epithelium, which is populated by a dynamic microbiota that includes Lactobacillus species. Currently, little is known about the interaction between commensal lactobacilli and pathogenic Neisseria, emphasizing a need for deeper studies into the molecular interactions between the two bacteria species. This, in turn, could add clinical and therapeutic value to existing treatments against an N. meningitidis infection. In this work, we explored how lactobacilli affect the interplay between N. meningitidis and host cells. We report that Lactobacillus crispatus, but not other tested Lactobacillus species, efficiently enters pharyngeal cells via caveolin-mediated lipid raft endocytosis and simultaneously enhances the uptake of N. meningitidis, as well as uptake of other pathogenic and non-pathogenic microbes. After promoting internalization, L. crispatus then prevented N. meningitidis from being released and transcytozed from a confluent cell layer on microporous transwell membranes. Infected cells increased the level of acidic vacuoles and pathogen clearance over time, while lactobacilli survived inside the cells. Taken together, the data suggest a possible route through which the cellular uptake of lactobacilli can increase the uptake of pathogens for destruction.
Collapse
Affiliation(s)
| | | | | | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; (K.L.); (S.P.); (M.R.O.d.U.)
| |
Collapse
|
2
|
Jans M, Kolata M, Blancke G, D'Hondt A, Gräf C, Ciers M, Sze M, Thiran A, Petta I, Andries V, Verbandt S, Shokry E, Sumpton D, Vande Voorde J, Berx G, Tejpar S, van Loo G, Iliev ID, Remaut H, Vereecke L. Colibactin-driven colon cancer requires adhesin-mediated epithelial binding. Nature 2024; 635:472-480. [PMID: 39506107 DOI: 10.1038/s41586-024-08135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Various bacteria are suggested to contribute to colorectal cancer (CRC) development1-5, including pks+ Escherichia coli, which produces the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells6. However, it remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells to cause harm. Here, using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC7, we demonstrate that the oncogenic potential of pks+ E. coli critically depends on bacterial adhesion to host epithelial cells, mediated by the type 1 pilus adhesin FimH and the F9 pilus adhesin FmlH. Blocking bacterial adhesion using a pharmacological FimH inhibitor attenuates colibactin-mediated genotoxicity and CRC exacerbation. We also show that allelic switching of FimH strongly influences the genotoxic potential of pks+ E. coli and can induce a genotoxic gain-of-function in the probiotic strain Nissle 1917. Adhesin-mediated epithelial binding subsequently allows the production of the genotoxin colibactin in close proximity to host epithelial cells, which promotes DNA damage and drives CRC development. These findings present promising therapeutic routes for the development of anti-adhesive therapies aimed at mitigating colibactin-induced DNA damage and inhibiting the initiation and progression of CRC, particularly in individuals at risk for developing CRC.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Magdalena Kolata
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural & Molecular Microbiology, VIB-VUB Centre for Structural Biology, Brussels, Belgium
| | - Gillian Blancke
- VIB Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Aline D'Hondt
- Structural & Molecular Microbiology, VIB-VUB Centre for Structural Biology, Brussels, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia Gräf
- Structural & Molecular Microbiology, VIB-VUB Centre for Structural Biology, Brussels, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Maarten Ciers
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Mozes Sze
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alexandra Thiran
- VIB Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ioanna Petta
- VIB Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Vanessa Andries
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sara Verbandt
- Department of Oncology, Catholic University Leuven, Leuven, Belgium
| | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Johan Vande Voorde
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Geert Berx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sabine Tejpar
- Department of Oncology, Catholic University Leuven, Leuven, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural & Molecular Microbiology, VIB-VUB Centre for Structural Biology, Brussels, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Stromberg ZR, Phillips SMB, Omberg KM, Hess BM. High-throughput functional trait testing for bacterial pathogens. mSphere 2023; 8:e0031523. [PMID: 37702517 PMCID: PMC10597404 DOI: 10.1128/msphere.00315-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Functional traits are characteristics that affect the fitness and metabolic function of a microorganism. There is growing interest in using high-throughput methods to characterize bacterial pathogens based on functional virulence traits. Traditional methods that phenotype a single organism for a single virulence trait can be time consuming and labor intensive. Alternatively, machine learning of whole-genome sequences (WGS) has shown some success in predicting virulence. However, relying solely on WGS can miss functional traits, particularly for organisms lacking classical virulence factors. We propose that high-throughput assays for functional virulence trait identification should become a prominent method of characterizing bacterial pathogens on a population scale. This work is critical as we move from compiling lists of bacterial species associated with disease to pathogen-agnostic approaches capable of detecting novel microbes. We discuss six key areas of functional trait testing and how advancing high-throughput methods could provide a greater understanding of pathogens.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shelby M. B. Phillips
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin M. Omberg
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Becky M. Hess
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
4
|
Jans M, Kolata M, Blancke G, Ciers M, Dohlman AB, Kusakabe T, Sze M, Thiran A, Berx G, Tejpar S, van Loo G, Iliev ID, Remaut H, Vereecke L. Colibactin-induced genotoxicity and colorectal cancer exacerbation critically depends on adhesin-mediated epithelial binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553526. [PMID: 37645947 PMCID: PMC10462063 DOI: 10.1101/2023.08.16.553526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including pks+ E. coli which produce the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. It remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells and its DNA to cause harm. Using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we found that pks+ E. coli drives CRC exacerbation and tissue invasion in a colibactin-dependent manner. Using isogenic mutant strains, we further demonstrate that CRC exacerbation critically depends on expression of the E. coli type-1 pilus adhesin FimH and the F9-pilus adhesin FmlH. Blocking bacterial adhesion using a pharmacological FimH inhibitor attenuates colibactin-mediated genotoxicity and CRC exacerbation. Together, we show that the oncogenic potential of pks+ E. coli critically depends on bacterial adhesion to host epithelial cells and is critically mediated by specific bacterial adhesins. Adhesin-mediated epithelial binding subsequently allows production of the genotoxin colibactin in close proximity to host epithelial cells, which promotes DNA damage and drives CRC development. These findings present promising therapeutic avenues for the development of anti-adhesive therapies aiming at mitigating colibactin-induced DNA damage and inhibiting the initiation and progression of CRC, particularly in individuals at risk for developing CRC.
Collapse
|
5
|
Gupta S, Kumar P, Rathi B, Verma V, Dhanda RS, Devi P, Yadav M. Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci Rep 2021; 11:17801. [PMID: 34493749 PMCID: PMC8423837 DOI: 10.1038/s41598-021-97224-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTI) are the most common infectious diseases in the world. It is becoming increasingly tough to treat because of emergence of antibiotic resistance. So, there is an exigency to develop novel anti-virulence therapeutics to combat multi-drug resistance pathogenic strains. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) discovery has revolutionized the gene editing technology for targeted approach. The greatest obstacle for CRISPR/Cas9 is cargo delivery systems and both viral and plasmid methods have disadvantages. Here, we report a highly efficient novel CRISPR based gene editing strategy, CRISPR-dots for targeting virulence factor Fimbrial Adhesion (papG gene), the bacterial adhesion molecule. Carbon quantum dots (CQD) were used as a delivery vehicle for Cas9 and gRNA into CFT073, a UPEC strain. CQDs were covalently conjugated to cas9 and papG-targeted guide RNA (gRNA) forming a nanocomplex CRISPR-dots (Cri-dots) as confirmed by DLS and transmission electron microscopy. Cri-dots-papG significantly targeted papG as demonstrated by decrease in the expression of papG.Further papG deficient UPEC had significantly reduced adherence ability and biofilm forming ability as demonstrated by fluorescence microscopy and scanning electron microscopy. Also, papG deficient UPEC had reduced virulence as shown by significantly increased survival of Caenorhabditis elegans (C. elegans) worms compared to UPEC. Our findings suggest that targeting of papG gene using Cri-dots nanocomplexes significantly reduced the pathogenicity of UPEC. Thus, Cri-dots nanocomplex offer a novel anti-bacterial strategy against multi-drug resistant UPEC.
Collapse
Affiliation(s)
- Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Hugh Kaul Genetics Building, Birmingham, AL, USA
| | - Bhawna Rathi
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | | | - Pooja Devi
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, India
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
6
|
Abstract
For microorganisms in particular, viability is a term that is difficult to define and a state consequently difficult to measure. The traditional (and gold standard) usage equates viability and culturability (i.e., the ability to multiply) but the process of determining culturability is often too slow. Flow cytometry provides the opportunity to make rapid and quantitative measurements of dye uptake in large numbers of cells and we can therefore exploit the flow cytometric approach to evaluate so-called viability stains and to develop protocols for more routine assessments of microbial viability. This article provides a commentary and several protocols have been included to ensure that users have a firm basis for attempting these reasonably difficult assays on traditional flow cytometer instruments. What is clear is that each assay must be carefully validated with the particular microorganism of interest before being applied in any research, clinical, or service form. © 2020 The Authors.
Collapse
Affiliation(s)
- Hazel Davey
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Université Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| |
Collapse
|
7
|
Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells. J Microbiol 2020; 58:405-414. [PMID: 32279277 DOI: 10.1007/s12275-020-9505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily infects the mucosa of the genitourinary tract, which in women, is colonized by natural microbiota, dominated by Lactobacillus spp., that protect human cells against pathogens. In this study, we demonstrated that precolonization of human epithelial cells with Lactobacillus crispatus, one of the most prevalent bacteria in the female urogenital tract, or preincubation with the L. crispatus enolase or glutamine synthetase impairs the adhesion and invasiveness of N. gonorrhoeae toward epithelial cells, two crucial steps in gonococcal pathogenesis. Furthermore, decreased expression of genes encoding the proinflam-matory cytokines, TNFα and CCL20, which are secreted as a consequence of N. gonorrhoeae infection, was observed in N. gonorrhoeae-infected epithelial cells that had been preco-lonized with L. crispatus or preincubated with enolase and glutamine synthetase. Thus, our results indicate that the protection of human cells against N. gonorrhoeae infection is a complex process and that L. crispatus and its proteins enolase and glutamine synthetase can have a potential role in protecting epithelial cells against gonococcal infection. Therefore, these results are important since disturbances of the micro-biota or of its proteins can result in dysbiosis, which is associated with increased susceptibility of epithelium to pathogens.
Collapse
|