1
|
Zhao Z, Liu P, Zhang H, Wang M, Liu Y, Wang L, He H, Ge Y, Zhou T, Xiao C, You Z, Zhang J. Gastrodin prevents stress-induced synaptic plasticity impairment and behavioral dysfunction via cAMP/PKA/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156661. [PMID: 40138775 DOI: 10.1016/j.phymed.2025.156661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Chronic stress is widely recognized as a critical factor that impairs synaptic plasticity dependent brain function and behavior, contributing to the onset of depression and anxiety disorders, which subsequently undermine learning and memory processes. Gastrodin (GAS), a prominent bioactive constituent of Gastrodiae Rhizoma exhibiting notable neuroprotective properties, holds significant potential for the prevention and treatment of stress-induced neurological dysfunction. However, the protective effects of GAS on stress-induced synaptic plasticity impairment and the underlying mechanisms have yet to be fully elucidated. OBJECTIVES To investigate the potential of GAS in protecting synaptic plasticity from chronic stress and its underlying cellular and molecular mechanisms. METHOD A chronic stress model was constructed in C57BL/6J mice, and the effects of GAS on synaptic plasticity were examined using Golgi staining and immunohistochemistry. Systematic behavioral analysis was employed to assess the impact of GAS on depressive- and anxiety-like behaviors and cognitive function of mice. Metabolomics, transcriptomics, Western blotting, immunolocalization, enzyme-linked immunosorbent assay, and the administration of signal blockers were utilized to investigate the cellular and molecular pathways via which GAS safeguards synaptic plasticity. RESULTS The results showed that chronic stress exposure reduces the dendritic arbor complexity, density of dendritic spines, proportion of mushroom spines of hippocampal neurons, as well as disrupts synaptic function, impairs cognitive function and induces depressive-like behaviors. Importantly, impairment of hippocampal synaptic plasticity, anxiety- and depressive-like behaviors, and cognitive decline induced by chronic stress were significantly ameliorated following GAS treatment. Moreover, we identified the cAMP/PKA/CREB signaling in hippocampal neurons as a potential mechanism through which GAS prevents synaptic plasticity impairment from chronic stress exposure. Blockade of cAMP/PKA/CREB signaling abolished the protective effects of GAS on synaptic plasticity of hippocampal neurons and behaviors in stress-exposed mice. CONCLUSION This study is the first to identify GAS as a potential natural compound for alleviating stress-induced synaptic plasticity impairment and behavioral dysfunction by activating the cAMP/PKA/CREB signaling pathway in hippocampal neurons, offering a promising strategy for stress-induced neurological disorders.
Collapse
Affiliation(s)
- Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Pei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Haili Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany.
| | - Yue Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Hui He
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yangyan Ge
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
2
|
Wang Y, Zhong L, Fang H, Liu Z, Wang P, Li L, Chen L, Ding G. Bioactive Metabolites from the Dusty Seeds of Gastrodia elata Bl., Based on Metabolomics and UPLC-Q-TOF-MS Combined with Molecular Network Strategy. PLANTS (BASEL, SWITZERLAND) 2025; 14:916. [PMID: 40265877 DOI: 10.3390/plants14060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Orchids produce tiny, light seeds (dust-like seeds without endosperm) that rely on specific symbiotic fungi for successful germination. Plant roots often release small signaling molecules or bioactive compounds to attract arbuscular mycorrhizal (AM) fungi, promoting fungal growth and hyphal branching. However, until now, no such bioactive or signaling molecules have been identified in orchids that help recruit fungi for seed germination. In this study, we used metabolomics and UPLC-Q-TOF-MS/MS, combined with a molecular network approach, to explore potential bioactive/signaling molecules in the seeds of the achlorophyllous orchid Gastrodia elata Bl. Our analysis revealed the presence of amino acids, nucleotides, lipids, organic acids, saccharides, phospholipids, and lignanamides. Specifically, organic acids, saccharides, and lignanamides were shown to promote the growth of Mycena osmundicola, a fungus important for seed germination. Additionally, lignanamides inhibited the plant pathogen Fusarium oxysporum and exhibited strong antioxidant and anti-inflammatory activities. This is the first systematic identification of bioactive/signaling molecules in G. elata Bl. seeds, providing new insights into the symbiotic relationship between orchids and fungi.
Collapse
Affiliation(s)
- Yanduo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Liwen Zhong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Huiqi Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng Wang
- College of Pharmacy, Hebei University, Baoding 071002, China
| | - Longfei Li
- College of Pharmacy, Hebei University, Baoding 071002, China
| | - Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Gang Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Suetsugu K, Okada H, Hirota SK, Yamasaki M, Imaichi R, Ebihara A. Drastic mycorrhizal community shifts in Sceptridium ferns during the generation transition from fully mycoheterotrophic gametophytes to photosynthetic sporophytes. THE NEW PHYTOLOGIST 2025; 245:1705-1717. [PMID: 39645585 PMCID: PMC11754932 DOI: 10.1111/nph.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Many plant species experience a prolonged subterranean phase during which they rely entirely on mycorrhizal fungi for carbon. While this mycoheterotrophic strategy spans liverworts, lycophytes, and ferns, most empirical research has centered on angiosperms. This study explores the fungal associations of Sceptridium (Ophioglossaceae), an early-diverging fern with mycoheterotrophic gametophytes. We analyzed germination patterns and fungal associations in Sceptridium gametophytes, comparing them to the distribution and mycorrhizal partners of photosynthetic sporophytes. High-throughput sequencing data reveal that mycoheterotrophic gametophytes consistently associate with a single Entrophospora fungus in the order Entrophosporales (Glomeromycotina), while photosynthetic sporophytes primarily partner with fungi from Glomeraceae (Glomerales, Glomeromycotina). Consequently, gametophytes exhibit spatial clustering without association with adult plants. This is the first documentation of an association between Entrophosporaceae (and the order Entrophosporales) and mycoheterotrophic plants. The drastic shifts in Sceptridium mycorrhizal communities across life stages likely reflect changing physiological needs during development. Further research is essential to determine whether the association with Entrophosporaceae is widespread among mycoheterotrophic species and to elucidate the functional and physiological mechanisms underlying these mycorrhizal shifts.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of ScienceKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
- Institute for Advanced ResearchKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of ScienceKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
| | - Shun K. Hirota
- Botanical GardensOsaka Metropolitan University2000 KisaichiKatanoOsaka576‐0004Japan
| | - Michimasa Yamasaki
- Division of Forest and Biomaterials Science, Graduate School of AgricultureKyoto UniversityKitashirakawa Oiwake‐cho, SakyKyoto606‐8502Japan
| | - Ryoko Imaichi
- Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women's UniversityMejirodaiTokyo112‐8681Japan
| | - Atsushi Ebihara
- Department of BotanyNational Museum of Nature and Science4‐1‐1 AmakuboTsukubaIbaraki305‐0005Japan
| |
Collapse
|
4
|
Zahn FE, Jiang H, Lee YI, Gebauer G. Mode of carbon gain and fungal associations of Neuwiedia malipoensis within the evolutionarily early-diverging orchid subfamily Apostasioideae. ANNALS OF BOTANY 2024; 134:511-520. [PMID: 38912975 PMCID: PMC11341671 DOI: 10.1093/aob/mcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS The earliest-diverging orchid lineage, Apostasioideae, consists only of two genera: Apostasia and Neuwiedia. Previous reports of Apostasia nipponica indicated a symbiotic association with an ectomycorrhiza-forming Ceratobasidiaceae clade and partial utilization of fungal carbon during the adult stage. However, the trophic strategy of Neuwiedia throughout its development remains unidentified. To further improve our understanding of mycoheterotrophy in the Apostasioideae, this study focused on Neuwiedia malipoensis examining both the mycorrhizal association and the physiological ecology of this orchid species across various development stages. METHODS We identified the major mycorrhizal fungi of N. malipoensis protocorm, leafy seedling and adult stages using molecular barcoding. To reveal nutritional resources utilized by N. malipoensis, we compared stable isotope natural abundances (δ13C, δ15N, δ2H, δ18O) of different developmental stages with those of autotrophic reference plants. KEY RESULTS Protocorms exhibited an association with saprotrophic Ceratobasidiaceae rather than ectomycorrhiza-forming Ceratobasidiaceae and the 13C signature was characteristic of their fully mycoheterotrophic nutrition. Seedlings and adults were predominantly associated with saprotrophic fungi belonging to the Tulasnellaceae. While 13C and 2H stable isotope data revealed partial mycoheterotrophy of seedlings, it is unclear to what extent the fungal carbon supply is reduced in adult N. malipoensis. However, the 15N enrichment of mature N. malipoensis suggests partially mycoheterotrophic nutrition. Our data indicated a transition in mycorrhizal partners during ontogenetic development with decreasing dependency of N. malipoensis on fungal nitrogen and carbon. CONCLUSIONS The divergence in mycorrhizal partners between N. malipoensis and A. nipponica indicates different resource acquisition strategies and allows various habitat options in the earliest-diverging orchid lineage, Apostasioideae. While A. nipponica relies on the heterotrophic carbon gain from its ectomycorrhizal fungal partner and thus on forest habitats, N. malipoensis rather relies on own photosynthetic carbon gain as an adult, allowing it to establish in habitats as widely distributed as those where Rhizoctonia fungi occur.
Collapse
Affiliation(s)
- Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Hong Jiang
- Yunnan Laboratory for Conservation of Rare, Endangered & Endemic Forest Plants, National Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, Yunnan, People’s Republic of China
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Jin XH, Wang YC, Li D, Li Y, He HY, Zhang HB. Diverse Mycena Fungi and Their Potential for Gastrodia elata Germination. J Microbiol Biotechnol 2024; 34:1249-1259. [PMID: 38938004 PMCID: PMC11239410 DOI: 10.4014/jmb.2401.01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/29/2024]
Abstract
It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.
Collapse
Affiliation(s)
- Xiao-Han Jin
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
- School of Ecology and Environmental Science, Yunnan University, Kunming, P.R. China
| | - Yu-Chuan Wang
- Gastrodia Tuber Research Institute of Zhaotong, P.R. China
| | - Dong Li
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
- School of Ecology and Environmental Science, Yunnan University, Kunming, P.R. China
| | - Yu Li
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
| | - Hai-Yan He
- The Agriculture and Life Sciences College, Zhaotong University, Zhaotong, P.R. China
- Yunnan Key Laboratory of Gastrodia elata and Fungus Symbiotic Biology, Zhaotong, P.R. China
| | - Han-Bo Zhang
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
| |
Collapse
|
6
|
Wang Y, Xu J, Yuan Q, Guo L, Zheng G, Xiao C, Yang C, Jiang W, Zhou T. Composition and diversity of soil microbial communities change by introducing Phallus impudicus into a Gastrodia elata Bl.-based soil. BMC Microbiol 2024; 24:204. [PMID: 38851673 PMCID: PMC11161949 DOI: 10.1186/s12866-024-03330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The Gastrodia elata Bl. is an orchid, and its growth demands the presence of Armillaria species. The strong competitiveness of Armillaria species has always been a concern of major threat to other soil organisms, thus disrupting the equilibrium of soil biodiversity. Introducing other species to where G. elata was cultivated, could possibly alleviate the problems associated with the disequilibrium of soil microenvironment; however, their impacts on the soil microbial communities and the underlying mechanisms remain unclear. To reveal the changes of microbial groups associated with soil chemical properties responding to different cultivation species, the chemical property measurements coupled with the next-generation pyrosequencing analyses were applied with soil samples collected from fallow land, cultivation of G. elata and Phallus impudicus, respectively. RESULTS The cultivation of G. elata induced significant increases (p < 0.05) in soil pH and NO3-N content compared with fallow land, whereas subsequent cultivation of P. impudicus reversed these G. elata-induced increases and was also found to significantly increase (p < 0.05) the content of soil NH4+-N and AP. The alpha diversities of soil microbial communities were significantly increased (p < 0.01) by cultivation of G. elata and P. impudicus as indicated with Chao1 estimator and Shannon index. The structure and composition of soil microbial communities differed responding to different cultivation species. In particular, the relative abundances of Bacillus, norank_o_Gaiellales, Mortierella and unclassified_k_Fungi were significantly increased (p < 0.05), while the abundances of potentially beneficial genera such as Acidibacter, Acidothermus, Cryptococcus, and Penicillium etc., were significantly decreased (p < 0.05) by cultivation of G. elata. It's interesting to find that cultivation of P. impudicus increased the abundances of these genera that G. elata decreased before, which contributed to the difference of composition and structure. The results of CCA and heatmap indicated that the changes of soil microbial communities had strong correlations with soil nutrients. Specifically, among 28 genera presented, 50% and 42.9% demonstrated significant correlations with soil pH and NO3-N in response to cultivation of G. elata and P. impudicus. CONCLUSIONS Our findings suggested that the cultivation of P. impudicus might have potential benefits as result of affecting soil microorganisms coupled with changes in soil nutrient profile.
Collapse
Affiliation(s)
- Yanhong Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qingsong Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gang Zheng
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changgui Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
7
|
Wong S, Kaur J, Kumar P, Karremans AP, Sharma J. Distinct orchid mycorrhizal fungal communities among co-occurring Vanilla species in Costa Rica: root substrate and population-based segregation. MYCORRHIZA 2024; 34:229-250. [PMID: 38664239 DOI: 10.1007/s00572-024-01147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Despite being the second largest family of flowering plants, orchids represent community structure variation in plant-microbial associations, contributes to niche partitioning in metacommunity assemblages. Yet, mycorrhizal communities and interactions remain unknown for orchids that are highly specialized or even obligated in their associations with their mycorrhizal partners. In this study, we sought to compare orchid mycorrhizal fungal (OMF) communities of three co-occurring hemiepiphytic Vanilla species (V. hartii, V. pompona, and V. trigonocarpa) in tropical forests of Costa Rica by addressing the identity of their OMF communities across species, root types, and populations, using high-throughput sequencing. Sequencing the nuclear ribosomal internal transcribed spacer (nrITS) yielded 299 fungal Operational Taxonomic Units (OTUs) from 193 root samples. We showed distinct segregation in the putative OMF (pOMF) communities of the three coexisting Vanilla hosts. We also found that mycorrhizal communities associated with the rare V. hartii varied among populations. Furthermore, we identified Tulasnellaceae and Ceratobasidiaceae as dominant pOMF families in terrestrial roots of the three Vanilla species. In contrast, the epiphytic roots were mainly dominated by OTUs belonging to the Atractiellales and Serendipitaceae. Furthermore, the pOMF communities differed significantly across populations of the widespread V. trigonocarpa and showed patterns of distance decay in similarity. This is the first report of different pOMF communities detected in roots of wild co-occurring Vanilla species using high-throughput sequencing, which provides evidence that three coexisting Vanilla species and their root types exhibited pOMF niche partitioning, and that the rare and widespread Vanilla hosts displayed diverse mycorrhizal preferences.
Collapse
Affiliation(s)
- Shan Wong
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Jaspreet Kaur
- Department of Biology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| | - Pankaj Kumar
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Adam P Karremans
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
8
|
Yang X, Gao Y, Li Z, Zang P, Zhao Y, Liu Q. Discovery of seed germinating fungi (Mycetinis scorodonius) from Gastrodia elata Bl. f. glauca S. chow in Changbai Mountain and examination of their germination ability. Sci Rep 2024; 14:12215. [PMID: 38806667 PMCID: PMC11133366 DOI: 10.1038/s41598-024-63189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Multi-generational asexual reproduction of Gastrodia elata Bl. will cause seedling species degeneration. Sexual reproduction of Gastrodia elata Bl. seed is an effective method to solve the problem of degeneration. The development of Gastrodia elata Bl. seeds cannot be separated from the germination fungus. However, there are few strains of germination fungus in production, and there is also the problem of species degradation in application for many years. It is very important for the sexual reproduction of Gastrodia elata Bl. to isolate more new strains of excellent germination fungus from the origin. This study used the Gastrodia elata Bl. f. glauca S. chow seeds germination vegetative propagation corms capture method to isolate its symbiotic germination fungus, and comprehensively identified the species of germination fungus by colony morphology, ITS, sporocarps regeneration and germination function, and compared the growth characteristics and germination ability with other germination fungus (Mycena purpureofusca, Mycena dendrobii and Mycena osmundicola). The germination fungus was isolated from the vegetative propagation corms of Gastrodia elata Bl. f. glauca S. chow seeds and named GYGL-1. After comprehensive identification, GYGL-1 was Mycetinis scorodonius. Compared with other germination fungus, GYGL-1 has fast germination speed, vigorous growth, and high germination ability for Gastrodia elata Bl. f. glauca S. chow seeds. Innovated the isolation method of Gastrodia elata Bl. seeds germination fungus, obtained the regenerated sporocarps of the germination fungus, and discovered that Mycetinis scorodonius has a new function of germinating Gastrodia elata Bl. f. glauca S. chow seeds, enriching the resource library of Gastrodia elata Bl. germination fungus.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China
- Laboratory of Medicinal Plant Cultivation and Breeding, State Administration of Traditional Chinese Medicine, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China.
- Laboratory of Medicinal Plant Cultivation and Breeding, State Administration of Traditional Chinese Medicine, Changchun, 130118, China.
| | - Zhaochun Li
- JINGZHEN TIANMA Co., Ltd., Jingyu County, Baishan, 135200, Jilin, China
| | - Pu Zang
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China
- Laboratory of Medicinal Plant Cultivation and Breeding, State Administration of Traditional Chinese Medicine, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
9
|
Yao N, Wang T, Jiang J, Yang Y, Cao X. Coriolopsis strumosa as an Orchid Endophytic Fungus and Its Spatial Distribution in Epidendrum sp. (Orchidaceae). Microorganisms 2024; 12:1054. [PMID: 38930436 PMCID: PMC11205860 DOI: 10.3390/microorganisms12061054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Coriolopsis spp. are wood-decaying fungi that inhabit forests. They are mainly distributed in tropical and subtropical areas. Strain Epi910 was isolated from the asymbiotically germinated protocorm of Epidendrum sp. and identified as Coriolopsis strumosa. Symbiotic germination and high-throughput sequencing of the endophytic fungal communities of different parts were performed to characterize the function and spatial distribution of the Epi910 isolate. Under symbiotic germination, Epi910 promoted seed germination and seedling formation as an endophytic native fungus of Epidendrum sp. Endophytic fungal communities from seven different parts of Epidendrum sp. were characterized. In total, 645 OTUs were identified; 30 OTUs were shared among all seven parts. The internal transcribed spacer sequence of Epi910 was identical to that of a dominant shared OTU (OTU6). The relative abundance of OTU6 in the seven parts was identified as follows: capsule pericarp > seed > root > asymbiotically germinated protocorm > epiphytic root > ovary > rachis. Our results suggest that the isolate belonging to Coriolopsis strumosa could promote the germination of Epidendrum sp. There may, therefore, be endophytic fungi other than common orchid mycorrhizal fungi with the ability to enhance germination in orchids.
Collapse
Affiliation(s)
- Na Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Tao Wang
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; (T.W.); (J.J.); (Y.Y.)
| | - Jingwan Jiang
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; (T.W.); (J.J.); (Y.Y.)
| | - Yuqian Yang
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; (T.W.); (J.J.); (Y.Y.)
| | - Xiaolu Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| |
Collapse
|
10
|
Umata H, Gale SW, Suetsugu K, Ota Y. Variable, life stage-dependent mycorrhizal specificity and its developmental consequences in the fully myco-heterotrophic orchid Cyrtosia septentrionalis. MYCOSCIENCE 2024; 65:68-78. [PMID: 39234511 PMCID: PMC11369304 DOI: 10.47371/mycosci.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 09/06/2024]
Abstract
The degree of specificity between fully myco-heterotrophic (MH) orchids and mycorrhizal fungi is regarded as high, but some species undergo a mycobiont shift as they transition from juvenile to adult plant. We investigated morphological and physiological aspects of the interaction between the fully MH Cyrtosia septentrionalis and its four known mycobionts to elucidate developmental consequences of variable, life-stage-dependent specificity. Of five randomly sampled germinated seeds co-cultured with each mycobiont, Physisporinus sp. 'TK-10' colonized all, Armillaria gallica and Desarmillaria tabescens colonized one, and A. mellea subsp. nipponica colonized none. Whereas 16.2% of aseptically germinated seeds exhibited onward growth when co-cultured with TK-10, just 1.5-2.6% did so with the other species. Even so, A. gallica colonized and formed internal rhizomorphs within rhizomes established with TK-10, suggesting that this mycobiont can replace and potentially can oust the latter. We infer that the orchid can associate with Armillaria and Desarmillaria mycobionts throughout its life, but that TK-10 enhances early growth. However, because TK-10 has a higher wood-rotting capacity than A. gallica, rapid resource exhaustion may cause nutrient supply shortages. We hypothesize that secondary colonization by Armillaria or Desarmillaria species triggers TK-10 displacement and that this mycobiont shift sustains orchid growth for longer.
Collapse
Affiliation(s)
| | | | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University
| | - Yuko Ota
- College of Bioresource Sciences, Nihon University
| |
Collapse
|
11
|
Liu JJ, Yang XQ, Li ZY, Miao JY, Li SB, Zhang WP, Lin YC, Lin LB. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 14:1309038. [PMID: 38264031 PMCID: PMC10804856 DOI: 10.3389/fpls.2023.1309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Xiao-Qi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Zong-Yang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Jia-Yun Miao
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Shi-Bo Li
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Wen-Ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| |
Collapse
|
12
|
Liu J, Xie F, Yi ZG, Ma T, Tie WT, Li YH, Bai J, Zhang LS. Gut microbiota deficiency ameliorates multiple myeloma and myeloma-related bone disease by Th17 cells in mice models. J Cancer 2023; 14:3191-3202. [PMID: 37928417 PMCID: PMC10622987 DOI: 10.7150/jca.88799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose: Multiple myeloma, the second most common hematological tumor, is currently incurable. Multiple myeloma-related bone disease is a characteristic clinical symptom that seriously affects the survival and prognosis of patients. In recent years, gut microbiota has been shown to play an important role in the occurrence and development of multiple myeloma. However, whether and how it affects the development of myelomatous bone disease is unclear. Methods: To investigate the mechanism and influence of the microbiota on multiple myeloma and myeloma bone disease, a myeloma-gut microbiota deletion mice model was established. 16S rRNA sequencing was used to analysis of bacterial flora changes. Histochemical staining and bone micro-CT were used to assess the severity of bone disease. Bone marrow tumor load and spleen Th17 cells were detected by flow cytometry. Results: Histochemical staining revealed a reduced tumor burden after eliminating gut microbial communities in mice by administering a mixture of antibiotics. According to the 16S rRNA sequencing of intestinal contents, antibiotic treatment resulted in a significant change in the microbiota of the mice. Bone micro-CT demonstrated that antibiotic treatment could reduce bone lesions caused by myeloma while increasing mineral density, bone volume fraction, trabecular bone thickness, and trabecular number. Meanwhile, histochemical staining of the bone found that the enhanced bone resorption was weakened by the change of flora. These results were consistent with the concentration of IL17 in serum and the frequency of Th17 cells in spleen. Conclusions: Herein, the effects of the gut microbiome on myeloma bone disease are investigated for the first time, providing new insight into its pathogenesis and suggesting that gut microbiota may serve as a therapeutic target in multiple myeloma-associated bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lian-sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
13
|
Mügge FLB, Sim CM, Honermeier B, Morlock GE. Bioactivity Profiling and Quantification of Gastrodin in Gastrodia elata Cultivated in the Field versus Facility via Hyphenated High-Performance Thin-Layer Chromatography. Int J Mol Sci 2023; 24:9936. [PMID: 37373083 DOI: 10.3390/ijms24129936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrodia elata (Orchidaceae) is native to mountainous areas of Asia and is a plant species used in traditional medicine for more than two thousand years. The species was reported to have many biological activities, such as neuroprotective, antioxidant, and anti-inflammatory activity. After many years of extensive exploitation from the wild, the plant was added to lists of endangered species. Since its desired cultivation is considered difficult, innovative cultivation methods that can reduce the costs of using new soil in each cycle and at the same time avoid contamination with pathogens and chemicals are urgently needed on large scale. In this work, five G. elata samples cultivated in a facility utilizing electron beam-treated soil were compared to two samples grown in the field concerning their chemical composition and bioactivity. Using hyphenated high-performance thin-layer chromatography (HPTLC) and multi-imaging (UV/Vis/FLD, also after derivatization), the chemical marker compound gastrodin was quantified in the seven G. elata rhizome/tuber samples, which showed differences in their contents between facility and field samples and between samples collected during different seasons. Parishin E was also found to be present. Combining HPTLC with on-surface (bio)assays, the antioxidant activity and inhibition of acetylcholinesterase as well as the absence of cytotoxicity against human cells were demonstrated and compared between samples.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Department of Food Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cheul Muu Sim
- Neutron Science Center, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Bernd Honermeier
- Department of Agronomy and Crop Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Department of Food Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
14
|
Yang J, Li P, Li Y, Xiao Q. GelFAP v2.0: an improved platform for Gene functional analysis in Gastrodia elata. BMC Genomics 2023; 24:164. [PMID: 37016293 PMCID: PMC10074892 DOI: 10.1186/s12864-023-09260-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Gastrodia elata (tianma), a well-known medicinal orchid, is widely used to treat various kinds of diseases with its dried tuber. In recent years, new chromosome-level genomes of G.elata have been released in succession, which offer an enormous resource pool for understanding gene function. Previously we have constructed GelFAP for gene functional analysis of G.elata. As genomes are updated and transcriptome data is accumulated, collection data in GelFAP cannot meet the need of researchers. RESULTS Based on new chromosome-level genome and transcriptome data, we constructed co-expression network of G. elata, and then we annotated genes by aligning with sequences from NR, TAIR, Uniprot and Swissprot database. GO (Gene Ontology) and KEGG (Kyoto Encylopaedia of Genes and Genomes) annotations were predicted by InterProScan and GhostKOALA software. Gene families were further predicted by iTAK (Plant Transcription factor and Protein kinase Identifier and Classifier), HMMER (hidden Markov models), InParanoid. Finally, we developed an improved platform for gene functional analysis in G. elata (GelFAP v2.0) by integrating new genome, transcriptome data and processed functional annotation. Several tools were also introduced to platform including BLAST (Basic Local Alignment Search Tool), GSEA (Gene Set Enrichment Analysis), Heatmap, JBrowse, Motif analysis and Sequence extraction. Based on this platform, we found that the flavonoid biosynthesis might be regulated by transcription factors (TFs) such as MYB, HB and NAC. We also took C4H and GAFP4 as examples to show the usage of our platform. CONCLUSION An improved platform for gene functional analysis in G. elata (GelFAP v2.0, www.gzybioinformatics.cn/Gelv2 ) was constructed, which provides better genome data, more transcriptome resources and more analysis tools. The updated platform might be preferably benefit researchers to carry out gene functional research for their project.
Collapse
Affiliation(s)
- Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Pengfei Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Yuping Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
15
|
Yu E, Gao Y, Li Y, Zang P, Zhao Y, He Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria. BMC PLANT BIOLOGY 2022; 22:621. [PMID: 36581798 PMCID: PMC9801631 DOI: 10.1186/s12870-022-04007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gastrodia elata Bl. f. glauca, a perennial herb of G.elata Bl. in Orchidaceae, is one of the most valuable traditional Chinese medicines. G. elata Bl. is a chlorophyll-free myco-heterotrophic plant, which must rely on the symbiotic growth of Armillaria, but not all Armillaria strains can play the symbiotic role. Additionally, Armillaria is easy to degenerate after multiple generations, and the compatibility between the strains from other areas and G. elata Bl. f. glauca in Changbai Mountain is unstable. Therefore, it is incredibly significant to isolate, identify and screen the symbiotic Armillaria suitable for the growth of G. elata Bl. f. glauca in Changbai Mountain, and to explore the mechanism by which Armillaria improves the production performance of G. elata Bl. f. glauca. RESULTS Firstly, G. elata Bl. f. glauca tubers, and rhizomorphs and fruiting bodies of Armillaria were used for the isolation and identification of Armillaria. Five Armillaria isolates were obtained in our laboratory and named: JMG, JMA, JMB, JMC and JMD. Secondly, Armillaria was selected based on the yield and the effective component content of G. elata Bl. f. glauca. It was concluded that the yield and quality of G. elata Bl. f. glauca co-planted with JMG is the highest. Finally, the mechanism of its high quality and yield was explored by investigating the effects of different Armillaria strains on the soil, its nutrition element contents and the soil microbial diversity around G. elata Bl. f. glauca in Changbai Mountain. CONCLUSIONS Compared with commercial strains, JMG significantly increased the content of Na, Al, Si, Mn, Fe, Zn, Rb and the absorption of C, Na, Mg, Ca, Cr, Cu, Zn and Rb in G. elata Bl. f. glauca; it improved the composition, diversity and metabolic functions of soil microbial communities around G. elata Bl. f. glauca at phylum, class and genus levels; it markedly increased the relative abundance of bacteria such as Chthoniobacter and Armillaria in the dominant populations, and enhanced such functions as Cell motility, amino acid metabolism and Lipid metabolism; it dramatically decreased the relative abundance of Bryobacter and other fungi in the dominant populations, and reduced such functions as microbial energy metabolism, translation and carbohydrate metabolism. This is the main reason why excellent Armillaria strains promote the high quality and yield of G. elata Bl. f. glauca in Changbai Mountain.
Collapse
Affiliation(s)
- En Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Yaqi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
16
|
Yao N, Wang T, Cao X. Epidendrumradicans Fungal Community during Ex Situ Germination and Isolation of Germination-Enhancing Fungi. Microorganisms 2022; 10:1841. [PMID: 36144443 PMCID: PMC9503211 DOI: 10.3390/microorganisms10091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Orchids exhibit varying specificities to fungi in different microbial environments. This pilot study investigated the preference of fungal recruitment during symbiotic germination of Epidendrum radicans Pav. ex Lindl. Two different orchid substrates were used for ex situ seed baiting: pine bark and rotten oak leaf, with Basidiomycota and Ascomycota as the respective dominant groups. Both substrates promoted seed germination, with a higher protocorm formation rate on pine bark (65.75%). High-throughput sequencing characterized the fungal communities of germinated protocorms. Basidiomycota was the dominant group in protocorms that symbiotically germinated on both substrates. The family-level community structures of endophytic fungi in protocorms that symbiotically germinated on both substrates were close to those of protocorms that germinated in vitro on MS1 medium. For protocorms, the dominant fungal groups recruited from substrates differed at the genus level; from pine bark, they were genera belonging to unclassified Sebacinales (41.34%), Thanatephorus (14.48%) and Fusarium (7.35%), while, from rotten oak leaf, they were Rhizoctonia (49.46%), Clitopilus (34.61%), and Oliveonia (7.96%). Four fungal isolates were successfully obtained and identified as belonging to the family Tulasnellaceae, genera Ceratobasidium and Peniophora, which could promote seed germination to the seedling stage. The data indicate that endophytic fungi for E. radicans germination on two different substrates are affected at the genus level by the substrate, with a degree of specificity at the family level.
Collapse
Affiliation(s)
- Na Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Tao Wang
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Floriculture Engineering Technology Research Centre, China National Botanical Garden, Beijing 100093, China
| | - Xiaolu Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
17
|
Moreno-Camarena M, Ortega-Larrocea MP. Mesoamerican Cypripedium: Mycorrhizal Contributions to Promote Their Conservation as Critically Endangered Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:1554. [PMID: 35736705 PMCID: PMC9227847 DOI: 10.3390/plants11121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In the valuable orchid genus Cypripedium, the section Irapeana consists of a distinctive group of Mesoamerican species that is formed by Cypripedium dickinsonianum Hágsater, C. irapeanum Lex., and C. molle Lindl. All lady slipper orchids exhibit different distributions and abundances. Data analysis that used herbarium accessions and field investigations indicated that the habitats of these three species have been dramatically reduced. Prospecting for suitable habitats based on climatic, vegetation, and soil parameters allows us to predict potential distributions. Conservation strategies, such as ex situ propagation by asymbiotic and symbiotic approaches, have indicated that the culture media used are a determining factor for seedling development. Mycorrhizal isolates play a main role in the compatibility and further development of germinated seeds. The fungi isolated from adult plants belong to two different families, which makes it possible that widely distributed C. irapeanum populations will be fungal-specific as well as restricted for C. molle. Root mycorrhization patterns occur high on the secondary roots. In contrast with other species of the genus, in situ germination can occur over a short period of two months, but we have documented periods as long as ten years. Cypripedium is a highly problematic genus for ex situ conservation because the germination requirements and cultures are poorly documented, and there is great urgency for in situ conservation to develop strategies for identifying hotspot habitats and actualize the protection status to avoid extinction of this genus.
Collapse
Affiliation(s)
- Mauricio Moreno-Camarena
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María Pilar Ortega-Larrocea
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Zahn FE, Lee YI, Gebauer G. Fungal association and root morphology shift stepwise during ontogenesis of orchid Cremastra appendiculata towards autotrophic nutrition. AOB PLANTS 2022; 14:plac021. [PMID: 35673361 PMCID: PMC9167560 DOI: 10.1093/aobpla/plac021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The chlorophyllous, terrestrial orchid Cremastra appendiculata from East Asia is unique concerning its fungal mycorrhiza partners. The initially mycoheterotrophic protocorms exploit rather specialized non-rhizoctonia saprotrophic Psathyrellaceae. Adult individuals of this orchid species are either linked to Psathyrellaceae being partially mycoheterotrophic or form mycorrhiza with fungi of the ubiquitous saprotrophic rhizoctonia group. This study provides new insights on nutrition mode, subterranean morphology and fungal partners across different life stages of C. appendiculata. We compared different development stages of C. appendiculata to surrounding autotrophic reference plants based on multi-element natural abundance stable isotope analyses (δ13C, δ15N, δ2H, δ18O) and total N concentrations. Site- and sampling-time-independent enrichment factors of stable isotopes were used to reveal trophic strategies. We determined mycorrhizal fungi of C. appendiculata protocorm, seedling and adult samples using high-throughput DNA sequencing. We identified saprotrophic non-rhizoctonia Psathyrellaceae as dominant mycorrhizal fungi in protocorm and seedling rhizomes. In contrast, the roots of seedlings and mature C. appendiculata were mainly colonized with fungi belonging to the polyphyletic assembly of rhizoctonia (Ceratobasidium, Thanatephorus and Serendipitaceae). Mature C. appendiculata did not differ in isotopic signature from autotrophic reference plants suggesting a fully autotrophic nutrition mode. Characteristic of orchid specimens entirely relying on fungal nutrition, C. appendiculata protocorms were enriched in 15N, 13C and 2H compared to reference plants. Seedlings showed an intermediate isotopic signature, underpinning the differences in the fungal community depending on their subterranean morphology. In contrast to the suggestion that C. appendiculata is a partially mycoheterotrophic orchid species, we provide novel evidence that mature C. appendiculata with rhizoctonia mycobionts can be entirely autotrophic. Besides an environmentally driven variability among populations, we suggest high within-individual flexibility in nutrition and mycobionts of C. appendiculata, which is subject to the ontogenetic development stage.
Collapse
Affiliation(s)
- Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
19
|
Liu T, Hua Z, Han P, Zhao Y, Zhou J, Jin Y, Li X, Huang L, Yuan Y. Mycorrhizosphere Bacteria, Rahnella sp. HPDA25, Promotes the Growth of Armillaria gallica and Its Parasitic Host Gastrodia elata. Front Microbiol 2022; 13:842893. [PMID: 35401480 PMCID: PMC8993504 DOI: 10.3389/fmicb.2022.842893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Gastrodia elata is an entirely heterotrophic plant, the growth of which is completely reliant on Armillaria gallica, an orchid mycorrhizal fungus. To avoid damaging ecosystems, G. elata cultivation is shifting from woodland to farmland. However, whether the microbial community structure remains stable during this conversation is unknown. Here, we cultivated G. elata in woodland or farmland and found that woodland-cultivated G. elata produced a greater yield and larger tuber size. The relative abundance of Rahnella was 22.84- and 122.25-fold higher in woodland- and farmland-cultivated soil samples, respectively, than that in uncultivated soil samples. To investigate how Rahnella impacts the growth of G. elata and establishes symbiosis with Armillaria gallica, three Rahnella spp. strains (HPDA25, SBD3, and SBD11) were isolated from mycorrhizosphere soil samples. It was found that these strains, especially HPDA25, promoted the growth of A. gallica. Ultra-performance liquid chromatography coupled to a triple quadrupole mass spectrometry analysis detected the indole-3-acetic acid with 16.24 ng/ml in HPDA25 fermentation solution. Co-culturing with the strain HPDA25 or exogenous indole-3-acetic acid increased the branching and fresh weight of rhizomorphs and the growth rate and extracellular laccase activity of A. gallica, compared with A. gallica cultured alone. The results of RNA-seq and quantitative real-time polymerase chain reaction analysis showed that co-culturing A. gallica with HPDA25 increased the expression level of the genes including hydrophobin, SUR7/PalI family, and pectin methylesterase, whereas decreased the expression levels of glycolysis-related genes. Furthermore, co-culturing with the strain HPDA25, A. gallica promotes the growth of G. elata and enhances the tuber size of G. elata. These results provide new insights into an orchid mycorrhizal symbiosis and the cultivation of G. elata.
Collapse
Affiliation(s)
- Tianrui Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyi Hua
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengjie Han
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuyang Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Luqi Huang,
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yuan Yuan,
| |
Collapse
|
20
|
|
21
|
Li YY, Boeraeve M, Cho YH, Jacquemyn H, Lee YI. Mycorrhizal Switching and the Role of Fungal Abundance in Seed Germination in a Fully Mycoheterotrophic Orchid, Gastrodia confusoides. FRONTIERS IN PLANT SCIENCE 2022; 12:775290. [PMID: 35095954 PMCID: PMC8792533 DOI: 10.3389/fpls.2021.775290] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mycorrhizal associations are essential for orchid germination and seedling establishment, and thus may constrain the distribution and abundance of orchids under natural conditions. Previous studies have shown that germination and seedling establishment in several orchids often decline with increasing distance from adult plants, resulting in non-random spatial patterns of seedling establishment. In contrast, individuals of the fully mycoheterotrophic orchid Gastrodia confusoides often tend to have random aboveground spatial patterns of distribution within bamboo forests. Since G. confusoides is parasitic on litter-decaying fungi, its random spatial patterns of distribution may be due to highly scattered patterns of litter-decaying fungi within bamboo forests. To test this hypothesis, we first identified the main mycorrhizal fungi associating with developing seeds and adult plants at a bamboo forest site in Taiwan using Miseq high-throughput DNA sequencing. Next, we combined seed germination experiments with quantitative PCR (qPCR) analyses to investigate to what extent the abundance of mycorrhizal fungi affected spatial patterns of seed germination. Our results show that seed germination and subsequent growth to an adult stage in G. confusoides required a distinct switch in mycorrhizal partners, in which protocorms associated with a single Mycena OTU, while adults mainly associated with an OTU from the genus Gymnopus. A strong, positive relationship was observed between germination and Mycena abundance in the litter, but not between germination and Gymnopus abundance. Fungal abundance was not significantly related to the distance from the adult plants, and consequently germination was also not significantly related to the distance from adult plants. Our results provide the first evidence that the abundance of litter-decaying fungi varies randomly within the bamboo forest and independently from G. confusoides adults.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Beijing Key Laboratory of Seed Disease Testing and Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Yu-Hsiu Cho
- Biology Department, National Museum of Natural Science, Taichung, Taiwan
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Mycorrhizal Fungal Partners Remain Constant during a Root Lifecycle of Pleione bulbocodioides (Orchidaceae). J Fungi (Basel) 2021; 7:jof7110994. [PMID: 34829281 PMCID: PMC8621020 DOI: 10.3390/jof7110994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Mycorrhizal mutualisms are vital for orchids through germination to adulthood. Fungal species diversity and community composition vary across seasons and plant development stages and affect plant survival, adaptation, and community maintenance. Knowledge of the temporal turnover of mycorrhizal fungi (OMF) remains poorly understood in the eco-physiologically diverse orchids (especially in epiphytic orchids), although it is important to understand the function and adaptation of mycorrhizae. Some species of Pleione are epiphytic plants with annual roots and may recruit different fungal partners during their root lifecycle. Based on continuous samplings of Pleione bulbocodioides during a whole root lifecycle, we characterized the fungal temporal dynamics using Illumina sequencing of the ITS2 region. Our data showed that the plants of P. bulbocodioides were quickly colonized by OMF at root emergence and had a constant OMF composition throughout one root lifecycle, although the OMF richness declined with root aging after a peak occurrence during root elongation. In contrast, the richness of root-inhabiting fungal endophytes kept increasing with root aging and more drastic turnovers were found in their species compositions. Our findings of OMF temporal turnover contribute to further understanding of mycorrhizal associations and adaptation of Orchidaceae and will benefit orchid resource conservation and utilization.
Collapse
|
23
|
Ye HT, Luo SQ, Yang ZN, Wang YS, Ding Q, Wang KF, Yang SX, Wang Y. Endophytic fungi stimulate the concentration of medicinal secondary metabolites in houttuynia cordata thunb. PLANT SIGNALING & BEHAVIOR 2021; 16:1929731. [PMID: 34092178 PMCID: PMC8280886 DOI: 10.1080/15592324.2021.1929731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Endophytic fungi usually establish a symbiotic relationship with the host plant and affect its growth. In order to evaluate the impact of endophytic fungi on the Chinese herbal medicinal plant Houttuynia cordata Thunb., three endophytes isolated from the rhizomes of H. cordata, namely Ilyonectria liriodendra (IL), unidentified fungal sp. (UF), and Penicillium citrinum (PC), were co-cultured individually with H. cordata in sterile soil for 60 days. Analysis of the results showed that the endophytes stimulated the host plant in different ways: IL increased the growth of rhizomes and the accumulation of most of the phenolics and volatiles, UF promoted the accumulation of the medicinal compounds afzelin, decanal, 2-undecanone, and borneol without influencing host plant growth, and PC increased the fresh weight, total leaf area and height of the plants, as well as the growth of the rhizomes, but had only a small effect on the concentration of major secondary metabolites. Our results proved that the endophytic fungi had potential practical value in terms of the production of Chinese herbal medicines, having the ability to improve the yield and accumulation of medicinal metabolites.
Collapse
Affiliation(s)
- Hai-Tao Ye
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Shi-Qiong Luo
- School of Life Science, Guizhou Normal University, Guiyang Guizhou, China
| | - Zhan-Nan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
- CONTACT Zhan-Nan Yang Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, 550001, China
| | - Yuan-Shuai Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Qian Ding
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Kai-Feng Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Shun-Xing Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - Yu Wang
- School of Life Science, Guizhou Normal University, Guiyang Guizhou, China
| |
Collapse
|
24
|
Shan T, Yin M, Wu J, Yu H, Liu M, Xu R, Wang J, Peng H, Zha L, Gui S. Comparative transcriptome analysis of tubers, stems, and flowers of Gastrodia elata Blume reveals potential genes involved in the biosynthesis of phenolics. Fitoterapia 2021; 153:104988. [PMID: 34246745 DOI: 10.1016/j.fitote.2021.104988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Orchidaceae, well known for its fascinating flowers, is one of the largest and most diverse families of flowering plants. There are many kinds of plants in this family; these are distributed practically globally and have high ornamental and medicinal values. Gastrodia elata Blume, a traditional Chinese medicinal herb, is a rootless and leafless achlorophyllous orchid. Phenolic compounds are considered to be the major bioactive constituents in G. elata, with antioxidant, antiangiogenic, neuroprotective, antidepressant, anxiolytic, and sedative activities. In this study, we determined the contents of six main phenolic components in tubers, stems and flowers from G. elata. Meanwhile, the transcriptomes of the tuber, stem and flower tissues of G. elata were obtained using the BGISEQ-500 platform. A total of 58.29 Gb of data and 113,067 unigenes were obtained, of which 74,820 unigenes were functionally annotated against seven public databases. Differentially expressed genes between tuber, stem and flower tissues were identified. A total of 76 DEGs encoding eight key enzymes were identified as candidate genes involved in the biosynthesis of phenolics in G. elata. For further validation, the expression levels of unigenes were measured using quantitative real-time PCR. Our results greatly enrich the transcriptomic data of G. elata and provide valuable information for the identification of candidate genes involved in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Tingyu Shan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Minzhen Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Junxian Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rui Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China; Institute of Traditional Chinese Medicine Resources, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
25
|
Ren LY, Zhao H, Liu XL, Zong TK, Qiao M, Liu SY, Liu XY. Transcriptome Reveals Roles of Lignin-Modifying Enzymes and Abscisic Acid in the Symbiosis of Mycena and Gastrodia elata. Int J Mol Sci 2021; 22:6557. [PMID: 34207287 PMCID: PMC8235111 DOI: 10.3390/ijms22126557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.
Collapse
Affiliation(s)
- Li-Ying Ren
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (X.-L.L.)
| | - Heng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (X.-L.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (X.-L.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-Kai Zong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China;
| | - Min Qiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Shu-Yan Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Yong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (X.-L.L.)
| |
Collapse
|
26
|
Ventre Lespiaucq A, Jacquemyn H, Rasmussen HN, Méndez M. Temporal turnover in mycorrhizal interactions: a proof of concept with orchids. THE NEW PHYTOLOGIST 2021; 230:1690-1699. [PMID: 33621346 DOI: 10.1111/nph.17291] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Temporal turnover events in biotic interactions involving plants are rarely assessed, although such changes might afford a considerable acclimation potential to the plant. This could enable fairly rapid responses to short-term fluctuations in growth conditions as well as lasting responses to long-term climatic trends. Here, we present a classification of temporal turnover encompassing 11 possible scenarios. Using orchid mycorrhiza as a study model, we show that temporal changes are common, and discuss under which conditions temporal turnover of fungal symbiont is expected. We provide six research questions and identify technical challenges that we deem most important for future studies. Finally, we discuss how the same framework can be applied to other types of biotic interactions.
Collapse
Affiliation(s)
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, 3001, Belgium
| | - Hanne N Rasmussen
- Department of Geosciences and Nature Management, Section for Forest, Nature and Biomass, University of Copenhagen, Copenhagen, 1958, Denmark
| | - Marcos Méndez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, 28933, Spain
| |
Collapse
|
27
|
Ogura-Tsujita Y, Yukawa T, Kinoshita A. Evolutionary histories and mycorrhizal associations of mycoheterotrophic plants dependent on saprotrophic fungi. JOURNAL OF PLANT RESEARCH 2021; 134:19-41. [PMID: 33417080 PMCID: PMC7817554 DOI: 10.1007/s10265-020-01244-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 05/25/2023]
Abstract
Mycoheterotrophic plants (MHPs) are leafless, achlorophyllous, and completely dependent on mycorrhizal fungi for their carbon supply. Mycorrhizal symbiosis is a mutualistic association with fungi that is undertaken by the majority of land plants, but mycoheterotrophy represents a breakdown of this mutualism in that plants parasitize fungi. Most MHPs are associated with fungi that are mycorrhizal with autotrophic plants, such as arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. Although these MHPs gain carbon via the common mycorrhizal network that links the surrounding autotrophic plants, some mycoheterotrophic lineages are associated with saprotrophic (SAP) fungi, which are free-living and decompose leaf litter and wood materials. Such MHPs are dependent on the forest carbon cycle, which involves the decomposition of wood debris and leaf litter, and have a unique biology and evolutionary history. MHPs associated with SAP fungi (SAP-MHPs) have to date been found only in the Orchidaceae and likely evolved independently at least nine times within that family. Phylogenetically divergent SAP Basidiomycota, mostly Agaricales but also Hymenochaetales, Polyporales, and others, are involved in mycoheterotrophy. The fungal specificity of SAP-MHPs varies from a highly specific association with a single fungal species to a broad range of interactions with multiple fungal orders. Establishment of symbiotic culture systems is indispensable for understanding the mechanisms underlying plant-fungus interactions and the conservation of MHPs. Symbiotic culture systems have been established for many SAP-MHP species as a pure culture of free-living SAP fungi is easier than that of biotrophic AM or ECM fungi. Culturable SAP-MHPs are useful research materials and will contribute to the advancement of plant science.
Collapse
Affiliation(s)
- Yuki Ogura-Tsujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan.
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-8580, Japan.
| | - Tomohisa Yukawa
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto city, Chuo-ku, Kurokami, Kumamoto, 860-0862, Japan
| |
Collapse
|
28
|
Marine Fungal Communities: Metabolic Engineering for Secondary Metabolites and Their Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Pujasatria GC, Miura C, Kaminaka H. In Vitro Symbiotic Germination: A Revitalized Heuristic Approach for Orchid Species Conservation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1742. [PMID: 33317200 PMCID: PMC7763479 DOI: 10.3390/plants9121742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
As one of the largest families of flowering plants, Orchidaceae is well-known for its high diversity and complex life cycles. Interestingly, such exquisite plants originate from minute seeds, going through challenges to germinate and establish in nature. Alternatively, orchid utilization as an economically important plant gradually decreases its natural population, therefore, driving the need for conservation. As with any conservation attempts, broad knowledge is required, including the species' interaction with other organisms. All orchids establish mycorrhizal symbiosis with certain lineages of fungi to germinate naturally. Since the whole in situ study is considerably complex, in vitro symbiotic germination study is a promising alternative. It serves as a tool for extensive studies at morphophysiological and molecular levels. In addition, it provides insights before reintroduction into its natural habitat. Here we reviewed how mycorrhiza contributes to orchid lifecycles, methods to conduct in vitro study, and how it can be utilized for conservation needs.
Collapse
Affiliation(s)
- Galih Chersy Pujasatria
- Department of Agricultural Science, Graduate School of Sustainable Science, Tottori University, Tottori 680-8553, Japan;
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan;
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan;
| |
Collapse
|
30
|
Identification and expression of DoCCaMK during Sebacina sp. symbiosis of Dendrobium officinale. Sci Rep 2020; 10:9733. [PMID: 32546714 PMCID: PMC7298032 DOI: 10.1038/s41598-020-66616-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/22/2020] [Indexed: 02/03/2023] Open
Abstract
Dendrobium officinale Kimura et Migo is a famous precious medicinal plant in China. Seed and seedling were cultivated with the mycorrhizal fungus Sebacina sp. CCaMK was initially cloned from D. officinale based on a SSH cDNA library of symbiotically germinated seeds with Sebacina sp. Phylogenetic analysis was performed among DoCCaMK and other CCaMKs. The particle bombardment technique was used to visualize DoCCaMK-GFP. qRT-PCR and western blot analysis were conducted to determine the tissue expression patterns of DoCCaMK with (SGS) and without (UGS) Sebacina sp. Furthermore, the effect of KN-93 on CCaMK expression was also examined. Using NMT the net Ca2+ fluxes and the CCaMK concentration were measured during D. officinale seed germination. DoCCaMK had the highest homology with Lilium longiflorum CCaMK. The DoCCaMK-GFP protein localized in the nucleus and cell membrane. CCaMK expression was significantly upregulated after symbiosis with Sebacina sp. KN-93 could be used as an inhibitor of CCaMK to inhibit D. officinale seed germination. Ca2+ influx and the concentration of the CCaMK in the SGS group was significantly more than that of the UGS group. The characterization of CCaMK provides certain genetic evidence for the involvement of this gene during seed germination and mycorrhizal cultivation in D. officinale.
Collapse
|
31
|
Yuan QS, Xu J, Jiang W, Ou X, Wang H, Guo L, Xiao C, Wang Y, Wang X, Kang C, Zhou T. Insight to shape of soil microbiome during the ternary cropping system of Gastradia elata. BMC Microbiol 2020; 20:108. [PMID: 32370761 PMCID: PMC7201697 DOI: 10.1186/s12866-020-01790-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background The ternary cropping system of Gastradia elata depends on a symbiotic relationship with the mycorrhizal fungi Armillaria mellea, which decays wood to assimilate nutrition for the growth of G. elata. The composition of microbe flora as key determinants of rhizoshere and mycorrhizoshere soil fertility and health was investigated to understand how G. elata and A. mellea impacted on its composition. The next generation pyrosequencing analysis was applied to assess the shift of structure of microbial community in rhizoshere of G. elata and mycorrhizoshere of A. mellea compared to the control sample under agriculture process. Results The root-associated microbe floras were significantly impacted by rhizocompartments (including rhizoshere and mycorrhizoshere) and agriculture process. Cropping process of G. elata enhanced the richness and diversity of the microbial community in rhizoshere and mycorrhizoshere soil. Furthermore, planting process of G. elata significantly reduced the abundance of phyla Basidiomycota, Firmicutes and Actinobacteria, while increased the abundance of phyla Ascomycota, Chloroflexi, Proteobacteria, Planctomycetes, and Gemmatimonadetes in rhizoshere and mycorrhizoshere. Besides, A. mellea and G. elata significantly enriched several members of saprophytoic and pathogenic fungus (i.e., Exophiala, Leptodontidium, Cosmospora, Cercophora, Metarhizium, Ilyonectria, and Sporothrix), which will enhance the possibility of G. elata disease incidence. At the same time, the ternary cropping system significantly deterred several members of beneficial ectomycorrhizal fungus (i.e., Russula, Sebacina, and Amanita), which will reduce the ability to protect G. elata from diseases. Conclusions In the ternary cropping system of G. elata, A. mellea and G. elata lead to imbalance of microbial community in rhizoshere and mycorrhizoshere soil, suggested that further studies on maintaining the balance of microbial community in A. mellea mycorrhizosphere and G. elata rhizosphere soil under field conditions may provide a promising avenue for high yield and high quality G. elata.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Jiao Xu
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Hui Wang
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China
| | - Xiao Wang
- Shandong Analysis and Test Center, Shandong Academic of Sciences, Jinan, 250014, Shandong, China
| | - Chuanzhi Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Dongqingnan Road, Guiyang, 540025, Guizhou, China.
| |
Collapse
|