1
|
Cortês IT, Silva KDP, Cogo-Müller K. Effects of simvastatin on the mevalonate pathway and cell wall integrity of Staphylococcus aureus. J Appl Microbiol 2025; 136:lxaf012. [PMID: 39788721 DOI: 10.1093/jambio/lxaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
AIMS To investigate the effects of simvastatin as an antimicrobial, considering its influence on the mevalonate pathway and the bacterial cell wall of S. aureus. METHODS AND RESULTS S. aureus ATCC 29213 and 33591 were exposed to simvastatin in the presence of exogenous mevalonate to determine whether mevalonate could reverse the inhibition. S. aureus was also treated with simvastatin and gene expression analysis assays were performed to evaluate genes associated with the mevalonate pathway (mvaA, mvaS, mvaK1, and mvaK2), peptidoglycan synthesis (uppS, uppP, and murG), and cell wall stress (vraX, sgtB, and tcaA). Transmission electron microscopy was used to identify the presence of morphological changes. The data were compared using two-way ANOVA and Bonferroni post-test, or the Mann-Whitney test. Addition of exogenous mevalonate was able to partially or completely reverse the inhibition caused by simvastatin. A significant increase of the vraX gene and a reduction of the mvaA gene were observed, together with changes in bacterial morphology. CONCLUSION Simvastatin can exert its antimicrobial effect by means of changes in the cell wall associated with the mevalonate pathway.
Collapse
Affiliation(s)
- Iago Torres Cortês
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil
| | - Kátia de Pádua Silva
- Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Rua Cândido Portinari, 200, Cidade Universitária, Campinas, SP 13083-871, Brazil
| | - Karina Cogo-Müller
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil
- Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Rua Cândido Portinari, 200, Cidade Universitária, Campinas, SP 13083-871, Brazil
| |
Collapse
|
2
|
Hsu YC, Liu CH, Wu YC, Lai SJ, Lin CJ, Tseng TS. Combatting Antibiotic-Resistant Staphylococcus aureus: Discovery of TST1N-224, a Potent Inhibitor Targeting Response Regulator VraRC, through Pharmacophore-Based Screening and Molecular Characterizations. J Chem Inf Model 2024; 64:6132-6146. [PMID: 39078379 PMCID: PMC11323011 DOI: 10.1021/acs.jcim.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major global health concern, causing various infections and presenting challenges due to antibiotic resistance. In particular, methicillin-resistant S. aureus, vancomycin-intermediate S. aureus (VISA), and vancomycin-resistant S. aureus pose significant obstacles in treating S. aureus infections. Therefore, the critical need for novel drugs to counter these resistant forms is pressing. Two-component systems (TCSs), integral to bacterial regulation, offer promising targets for disruption. In this study, a comprehensive approach, involving pharmacophore-based inhibitor screening, along with biochemical and biophysical analyses were conducted to identify, characterize, and validate potential inhibitors targeting the response regulator VraRC of S. aureus. The constructed pharmacophore model, Phar-VRPR-N3, demonstrated effectiveness in identifying a potent inhibitor, TST1N-224 (IC50 = 60.2 ± 4.0 μM), against the formation of the VraRC-DNA complex. Notably, TST1N-224 exhibited strong binding to VraRC (KD = 23.4 ± 1.2 μM) using a fast-on-fast-off binding mechanism. Additionally, NMR-based molecular modeling revealed that TST1N-224 predominantly interacts with the α9- and α10-helixes of the DNA-binding domain of VraR, where the interactive and functionally essential residues (N165, K180, S184, and R195) act as hotspots for structure-based inhibitor optimization. Furthermore, TST1N-224 evidently enhanced the susceptibility of VISA to both vancomycin and methicillin. Importantly, TST1N-224 distinguished by 1,2,5,6-tetrathiocane with the 3 and 8 positions modified with ethanesulfonates holds significant potential as a lead compound for the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Ying-Chu Hsu
- Division
of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Christian Hospital, Chiayi 600566, Taiwan
| | - Ching-Hui Liu
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Yi-Chen Wu
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Shu-Jung Lai
- Graduate
Institute of Biomedical Sciences, China
Medical University, Taichung 404333, Taiwan
- Research
Center for Cancer Biology, China Medical
University, Taichung 404333, Taiwan
| | - Chi-Jan Lin
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Tien-Sheng Tseng
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| |
Collapse
|
3
|
Liu S, Huang Y, Jensen S, Laman P, Kramer G, Zaat SAJ, Brul S. Molecular physiological characterization of the dynamics of persister formation in Staphylococcus aureus. Antimicrob Agents Chemother 2024; 68:e0085023. [PMID: 38051079 PMCID: PMC10777834 DOI: 10.1128/aac.00850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
Bacteria possess the ability to enter a growth-arrested state known as persistence in order to survive antibiotic exposure. Clinically, persisters are regarded as the main causative agents for chronic and recurrent infectious diseases. To combat this antibiotic-tolerant population, a better understanding of the molecular physiology of persisters is required. In this study, we collected samples at different stages of the biphasic kill curve to reveal the dynamics of the cellular molecular changes that occur in the process of persister formation. After exposure to antibiotics with different modes of action, namely, vancomycin and enrofloxacin, similar persister levels were obtained. Both shared and distinct stress responses were enriched for the respective persister populations. However, the dynamics of the presence of proteins linked to the persister phenotype throughout the biphasic kill curve and the molecular profiles in a stable persistent population did show large differences, depending on the antibiotic used. This suggests that persisters at the molecular level are highly stress specific, emphasizing the importance of characterizing persisters generated under different stress conditions. Additionally, although generated persisters exhibited cross-tolerance toward tested antibiotics, combined therapies were demonstrated to be a promising approach to reduce persister levels. In conclusion, this investigation sheds light on the stress-specific nature of persisters, highlighting the necessity of tailored treatment approaches and the potential of combined therapy.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Yixuan Huang
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Sean Jensen
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Paul Laman
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| |
Collapse
|
4
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
5
|
Yan X, Xu Y, Shen C, Chen D. Inactivation of Staphylococcus aureus by Levulinic Acid Plus Sodium Dodecyl Sulfate and their Antibacterial Mechanisms on S. aureus Biofilms by Transcriptomic Analysis. J Food Prot 2023; 86:100050. [PMID: 36916557 DOI: 10.1016/j.jfp.2023.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
The combination of levulinic acid (LVA) and sodium dodecyl sulfate (SDS) in recent years has shown a considerable potential to use as an antimicrobial intervention. The objectives of this study were to evaluate the antimicrobial efficacy of the combination against Staphylococcus aureus in both planktonic and biofilm states and to investigate the transcriptional changes in S. aureus biofilms coincubated with sublethal concentrations of LVA and/or SDS. The minimum inhibitory concentrations (MICs) of LVA and SDS determined by the microdilution method were 3.125 and 0.039 mg/mL, respectively. An additive bacteriostatic interaction (fractional inhibitory concentration index = 1) between the two compounds was observed by the checkerboard assay, whereas a synergistic bactericidal activity was displayed by the time-kill assay. The biomass and viable cells in the biofilms were reduced by both antimicrobials either alone or in combination in a dose-dependent manner. Transcriptomics indicated that more differentially expressed (DE) genes were observed in the biofilm treated with SDS (103 up- and 205 downregulated DE genes) and LVA + SDS (187 up and 162 down) than that coincubated with LVA (34 up and 32 down). The SDS and LVA + SDS treatments mainly affected the expression of genes responsible for cell surface proteins, virulence factors, adhesins, and capsular polysaccharides. Both the antibiofilm assay and the transcriptomics indicated that SDS, not LVA, was the major chemical contributing to the antibacterial efficacy of the combination. This study reveals the behavioral responses and protective mechanisms of S. aureus to LVA and SDS applied individually or in combination.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Yiwei Xu
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China.
| |
Collapse
|
6
|
Tang Y, Zou F, Chen C, Zhang Y, Shen Z, Liu Y, Deng Q, Yu Z, Wen Z. Antibacterial and Antibiofilm Activities of Sertindole and Its Antibacterial Mechanism against Staphylococcus aureus. ACS OMEGA 2023; 8:5415-5425. [PMID: 36816695 PMCID: PMC9933216 DOI: 10.1021/acsomega.2c06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As methicillin-resistant Staphylococcus aureus has become the most prevalent antibiotic-resistant pathogen in many countries, there is an urgent demand to develop novel antibacterial agents. The purpose of this study is to investigate sertindole's antibacterial and antibiofilm properties, as well as its antibacterial mechanism against S. aureus. The MIC50 and MIC90 values for sertindole against S. aureus were both determined to be 50 μM, and sertindole significantly reduced S. aureus growth at a subinhibitory concentration of 1/2× MIC. Sertindole also showed remarkable potency in inhibiting the development of biofilms. Additionally, proteomic analysis revealed that sertindole could dramatically decrease the biosynthesis of amino acids and trigger the cell wall stress response and oxidative stress response. A series of tests, including membrane permeability assays, quantitative real-time reverse transcription-PCR, and electron microscope observations, revealed that sertindole disrupts cell integrity. The two-component system VraS/VraR knockout S. epidermis strain also showed enhanced sensitivity to sertindole. Overall, our data suggested that sertindole exhibited antibacterial and biofilm-inhibiting activities against S. aureus and that its antibacterial actions may involve the destruction of cell integrity.
Collapse
|
7
|
Ravikumar V, Mijakovic I, Pandit S. Antimicrobial Activity of Graphene Oxide Contributes to Alteration of Key Stress-Related and Membrane Bound Proteins. Int J Nanomedicine 2022; 17:6707-6721. [PMID: 36597432 PMCID: PMC9805717 DOI: 10.2147/ijn.s387590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Antibacterial activity of graphene oxide (GO) has been extensively studied, wherein penetration of the bacterial cell membrane and oxidative stress are considered to play a major role in the bactericidal activity of GO. However, the specific mechanism responsible for the antibacterial activity of GO remains largely unknown. Hence, the goal of this study was to explore the mode of action of GO, via an in-depth proteomic analysis of the targeted bacteria. Methods Staphylococcus aureus was grown in the presence of GO and samples were collected at different growth phases to examine the cell viability and to analyze the changes in protein expression. Antimicrobial efficiency of GO was tested by assessing bacterial viability, live/dead staining and scanning electron microscopy. The intracellular reactive oxygen species (ROS) induced by GO treatment were examined by fluorescence microscopy. Label-free quantitative proteomics analysis was performed to examine the differentially regulated proteins in S. aureus after GO treatment. Results GO treatment was observed to reduce S. aureus viability, from 50 ± 17% after 4 h, to 93 ± 2% after 24 h. The live/dead staining confirmed this progressive antimicrobial effect of GO. SEM images revealed the wrapping of bacterial cells and their morphological disruption by means of pore formation due to GO insertion. GO treatment was observed to generate intracellular ROS, correlating to the loss of cell viability. The proteomics analysis revealed alteration in the expression of cell membrane, oxidative stress response, general stress response, and virulence-associated proteins in GO-treated bacterial cells. The time-dependent bactericidal activity of GO correlated with a higher number of differentially regulated proteins involved in the above.-mentioned processes. Conclusion The obtained results suggest that the time-dependent bactericidal effect of GO is attributed to its wrapping/trapping ability, ROS production and due to physical disruption of the cell membrane.
Collapse
Affiliation(s)
- Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden,Correspondence: Santosh Pandit, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Göteborg, 41296, Sweden, Tel +46 729484011, Fax +46 317723801, Email
| |
Collapse
|
8
|
Kumar JV, Tseng T, Lou Y, Wei S, Wu T, Tang H, Chiu Y, Hsu C, Chen C. Structural insights into DNA binding domain of vancomycin-resistance-associated response regulator in complex with its promoter DNA from Staphylococcus aureus. Protein Sci 2022; 31:e4286. [PMID: 35481641 PMCID: PMC8994486 DOI: 10.1002/pro.4286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
In Staphylococcus aureus, vancomycin-resistance-associated response regulator (VraR) is a part of the VraSR two-component system, which is responsible for activating a cell wall-stress stimulon in response to an antibiotic that inhibits cell wall formation. Two VraR-binding sites have been identified: R1 and R2 in the vraSR operon control region. However, the binding of VraR to a promoter DNA enhancing downstream gene expression remains unclear. VraR contains a conserved N-terminal receiver domain (VraRN ) connected to a C-terminal DNA binding domain (VraRC ) with a flexible linker. Here, we present the crystal structure of VraRC alone and in complex with R1-DNA in 1.87- and 2.0-Å resolution, respectively. VraRC consisting of four α-helices forms a dimer when interacting with R1-DNA. In the VraRC -DNA complex structure, Mg2+ ion is bound to Asp194. Biolayer interferometry experiments revealed that the addition of Mg2+ to VraRC enhanced its DNA binding affinity by eightfold. In addition, interpretation of NMR titrations between VraRC with R1- and R2-DNA revealed the essential residues that might play a crucial role in interacting with DNA of the vraSR operon. The structural information could help in designing and screening potential therapeutics/inhibitors to deal with antibiotic-resistant S. aureus via targeting VraR.
Collapse
Affiliation(s)
| | - Tien‐Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing UniversityTaichungTaiwan
| | - Yuan‐Chao Lou
- Biomedical Translation Research CenterAcademia SinicaTaipeiTaiwan
| | - Shu‐Yi Wei
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Tsung‐Han Wu
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan
| | - Hao‐Cheng Tang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Yi‐Chih Chiu
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan
| | - Chun‐Hua Hsu
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan
- Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan
- Institute of Biochemical Sciences, National Taiwan UniversityTaipeiTaiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| |
Collapse
|
9
|
Bhowmik D, Das BJ, Hazarika M, Chanda DD, Bhattacharjee A. Transcriptional analysis of prsA and vraTS regulatory system in methicillin resistant Staphylococcus aureus against oxacillin stress. Indian J Med Microbiol 2021; 40:57-60. [PMID: 34774342 DOI: 10.1016/j.ijmmb.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE The prsA and vraTSR regulatory systems play a unique role in methicillin resistance by modifying the peptidoglycan cell wall PBP2 and involving cell wall stress response in Staphylococcus aureus. This study was designed to observe the transcriptional response of prsA and vraTSR system under oxacillin stress in S.aureus. METHODS In this study, three clinical isolates of Staphylococcus aureus and a laboratory strain were examined. All the isolates were tested for mecA gene by PCR assay and were also tested for prsA, vraT, vraS and vraR gene. The transcriptional responses of the prsA gene along with the vraTSR regulatory system in these isolates was observed under normal conditions and exposed to 2 μg/ml and 4 μg/ml of oxacillin stress by quantitative real-time PCR assay. RESULTS The result of transcriptional analysis confirmed that under oxacillin stress, the expressions of vraS and vraT are increased with the increase in the concentration of oxacillin. However, prsA has shown no significant expression under oxacillin stress. CONCLUSION Although prsA did not show any specific expressional pattern, the study highlights the role of vraS and vraT regulatory system in conferring a methicillin-resistant phenotype when exposed to subinhibitory concentrations of oxacillin, which could act as a potential target for the next-generation antimicrobials.
Collapse
Affiliation(s)
| | | | | | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | | |
Collapse
|
10
|
Hort M, Bertsche U, Nozinovic S, Dietrich A, Schrötter AS, Mildenberger L, Axtmann K, Berscheid A, Bierbaum G. The Role of β-Glycosylated Wall Teichoic Acids in the Reduction of Vancomycin Susceptibility in Vancomycin-Intermediate Staphylococcus aureus. Microbiol Spectr 2021; 9:e0052821. [PMID: 34668723 PMCID: PMC8528128 DOI: 10.1128/spectrum.00528-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections. Due to the rapid evolution of antibiotic resistance that leads to treatment failure, it is important to understand the underlying mechanisms. Here, the cell wall structures of several laboratory vancomycin-intermediate S. aureus (VISA) strains were analyzed. Among the VISA strains were S. aureus VC40, which accumulated 79 mutations, including most importantly 2 exchanges in the histidine-kinase VraS, and developed full resistance against vancomycin (MIC, 64 μg/ml); a revertant S. aureus VC40R, which has an additional mutation in vraR (MIC, 4 μg/ml); and S. aureus VraS(VC40), in which the 2 vraS mutations were reconstituted into a susceptible background (MIC, 4 μg/ml). A ultraperformance liquid chromatography (UPLC) analysis showed that S. aureus VC40 had a significantly decreased cross-linking of the peptidoglycan. Both S. aureus VC40 and S. aureus VraS(VC40) displayed reduced autolysis and an altered autolysin profile in a zymogram. Most striking was the significant increase in d-alanine and N-acetyl-d-glucosamine (GlcNAc) substitution of the wall teichoic acids (WTAs) in S. aureus VC40. Nuclear magnetic resonance (NMR) analysis revealed that this strain had mostly β-glycosylated WTAs in contrast to the other strains, which showed only the α-glycosylation peak. Salt stress induced the incorporation of β-GlcNAc anomers and drastically increased the vancomycin MIC for S. aureus VC40R. In addition, β-glycosylated WTAs decreased the binding affinity of AtlA, the major autolysin of S. aureus, to the cell wall, compared with α-glycosylated WTAs. In conclusion, there is a novel connection between wall teichoic acids, autolysis, and vancomycin susceptibility in S. aureus. IMPORTANCE Infections with methicillin-resistant Staphylococcus aureus are commonly treated with vancomycin. This antibiotic inhibits cell wall biosynthesis by binding to the cell wall building block lipid II. We set out to characterize the mechanisms leading to decreased vancomycin susceptibility in a laboratory-generated strain, S. aureus VC40. This strain has an altered cell wall architecture with a thick cell wall with low cross-linking, which provides decoy binding sites for vancomycin. The low cross-linking, necessary for this resistance mechanism, decreases the stability of the cell wall against lytic enzymes, which separate the daughter cells. Protection against these enzymes is provided by another cell wall polymer, the teichoic acids, which contain an unusually high substitution with sugars in the β-conformation. By experimentally increasing the proportion of β-N-acetyl-d-glucosamine in a closely related isolate through the induction of salt stress, we could show that the β-conformation of the sugars plays a vital role in the resistance of S. aureus VC40.
Collapse
Affiliation(s)
- Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Sophie Schrötter
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Laura Mildenberger
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Berscheid
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
12
|
Wu S, Lin K, Liu Y, Zhang H, Lei L. Two-component signaling pathways modulate drug resistance of Staphylococcus aureus (Review). Biomed Rep 2020; 13:5. [PMID: 32607234 PMCID: PMC7323452 DOI: 10.3892/br.2020.1312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/07/2020] [Indexed: 02/05/2023] Open
Abstract
As the issues surrounding antibiotic-resistant strains of Staphylococcus aureus (S. aureus) are becoming increasingly serious concerns, it is imperative to investigate new therapeutic targets to successfully treat patients with S. aureus infections. The two-component signal transduction system is one of the primary pathways by which bacteria adapt to the external environment, and it serves an important role in regulating virulence gene expression, cell wall synthesis, biofilm formation and bacterial activity. There are 17 two-component signaling pathways in S. aureus, among which WalKR/VicSR/YycGF, AirSR/YhcSR, vancomycin resistance associated regulator/sensor and LytRS have been demonstrated to serve vital roles in regulating bacterial resistance, and are hypothesized to be potential targets for the treatment of S. aureus infections. The present review assesses the mechanism of the two-component signaling pathways associated with the development of S. aureus resistance.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kaifeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|