1
|
Yaikhan T, Singkhamanan K, Dechathai T, Chukamnerd A, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. Genome-based alert on a clinical Plesiomonas shigelloides PSU59 from Thailand: Resistance and virulence features. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 132:105764. [PMID: 40381794 DOI: 10.1016/j.meegid.2025.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Plesiomonas shigelloides, an aquatic Gram-negative bacterium, is increasingly recognized as an emerging pathogen with antimicrobial resistance (AMR) potential. This study provides a genome-based alert on P. shigelloides PSU59, isolated from a patient in Thailand. Whole-genome sequencing (WGS) revealed a 3.6 Mb draft genome (38 contigs, 51.9 % GC) encoding 3265 coding sequences and 129 RNA genes. Thirteen AMR genes were identified, including efflux pumps (adeF, tet(A)), target modifiers (dfrA1, sul2), and aminoglycoside-inactivating enzymes. Mobile genetic elements (MGEs) flanking resistance genes suggest horizontal gene transfer (HGT). Virulence analysis revealed 48 factors, notably flagellar genes (fliM, fliN, flhA) linked to motility. Phylogenetic comparison placed PSU59 in Clade 3, closely related to a food-derived strain. These results highlight the pathogenic and drug-resistant potential of P. shigelloides PSU59 and underscore the importance of genomic surveillance in tracking emerging threats among under-recognized pathogens.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thitaporn Dechathai
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Erysipelothrix rhusiopathiae and Riemerella anatipestifer Isolates from Clinical Cases of Waterfowl in Hungary Between 2022 and 2023. Antibiotics (Basel) 2025; 14:478. [PMID: 40426544 PMCID: PMC12108183 DOI: 10.3390/antibiotics14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background:Riemerella anatipestifer and Erysipelothrix rhusiopathiae remain clinically significant pathogens in the waterfowl industry, causing substantial economic losses and posing potential zoonotic risks. Antimicrobial resistance (AMR) continues to spread in the poultry sector, making regular surveillance of bacterial isolates essential. Methods: In this study, eight R. anatipestifer and eighteen E. rhusiopathiae strains were isolated from clinical cases in Hungarian waterfowl between 2022 and 2023. Minimum inhibitory concentration (MIC) values were determined for antibiotics of veterinary and public health significance. Results: For R. anatipestifer, high resistance rates were observed for spectinomycin, lincomycin, and tiamulin, while beta-lactam antibiotics (amoxicillin, ceftriaxone, and imipenem) demonstrated strong efficacy. Among the E. rhusiopathiae isolates, resistance to amoxicillin (89%) and enrofloxacin (61%) was notable, whereas ceftriaxone and doxycycline exhibited moderate antibacterial effects. Conclusions: Our findings underscore the importance of targeted antimicrobial use in the waterfowl industry. Beta-lactam antibiotics remain effective, whereas rising resistance to fluoroquinolones and aminoglycosides raise serious concerns. Routine AMR surveillance and the adoption of alternative strategies are crucial for controlling infections and maintaining flock health.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| |
Collapse
|
3
|
Wang M, Yao Y, Yang Y, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Tian B, Sun D, Zhang L, Yu Y, He Y, Wu Z, Cheng A, Liu M. The characterization of outer membrane vesicles (OMVs) and their role in mediating antibiotic-resistance gene transfer through natural transformation in Riemerella anatipestifer. Poult Sci 2025; 104:104730. [PMID: 39729729 PMCID: PMC11742308 DOI: 10.1016/j.psj.2024.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer, RA) is the etiological agent of duck serositis, an acute multisystemic disease in ducks that is globally distributed and causes serious economic losses in the duck industry. Despite exhibiting multidrug resistance, the transmission mechanism of its antibiotic resistance genes (ARGs) remains incompletely identified. To contribute to addressing this gap, in this study, outer membrane vesicles (OMVs) from the RA strain CH-1 were isolated and characterized to investigate their involvement in ARG transfer in RA. Sequencing and data analysis revealed that RA CH-1 OMVs had ∼2.04 Mb genomic size, representing 88.3 % of the RA CH-1 genomic length. Proteomic analysis showed that OMVs contained 577 proteins, representing 27.2 % of the bacterial proteins. Subsequent investigations demonstrated that OMVs from antibiotic-resistant strains transferred ARG fragments and plasmids to the sensitive strain RA ATCC11845, relying on the natural transformation system, and the transformants exhibited corresponding resistance. Overall, OMV-mediated horizontal transfer of ARGs serving as a significant mechanism for acquiring multiple resistance genes in R. anatipestifer.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yizhou Yao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanling Yu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Chen Q, Yu Y, Xu Y, Quan H, Liu D, Li C, Liu M, Gong X. Salmonella Typhimurium alters galactitol metabolism under ciprofloxacin treatment to balance resistance and virulence. J Bacteriol 2024; 206:e0017824. [PMID: 39082861 PMCID: PMC11340313 DOI: 10.1128/jb.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Ciprofloxacin-resistant Salmonella Typhimurium (S. Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in Salmonella spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains in vitro. Here, we investigated the multistep evolution of resistance in replicate populations of S. Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of S. Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of "collateral" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the gatR gene responsible for the utilization of galactitol, but RamA deletion strains could not activate gatR. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of gatR, can lead to a reduction in the growth rate, adhesion, and colonization resistance of S. Typhimurium. This finding is supported by studies conducted in M9 medium as well as in vivo infection models. IMPORTANCE Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of S. Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that S. Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.
Collapse
Affiliation(s)
- Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongfeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Heng Quan
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Donghui Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Caiyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mengyao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Han Y, Li M, Su D, Xiong S, Feng Y, Deng Q, Ding H. Chlorogenic acid attenuates tet (X)-mediated doxycycline resistance of Riemerella anatipestifer. Front Vet Sci 2024; 11:1368579. [PMID: 38764851 PMCID: PMC11099206 DOI: 10.3389/fvets.2024.1368579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction The increasing resistance of R. anatipestifer has posed a significant threat to the poultry industry in recent years. The tet gene is the primary determinant of tetracycline resistance in numerous bacteria, and the enzyme modification gene tet(X) is predominantly detected in tetracycline-resistant R. anatipestifer strains. Methods In this study, we evaluated the susceptibility of both the standard strain and clinical isolates of R. anatipestifer to doxycycline. And the expression levels of tet(X), tet(A), and tet(O) genes were detected. To assess drug susceptibility, shuttle plasmids were constructed to transfer the tet(X) gene into the standard strain of R. anatipestifer followed by treatment with chlorogenic acid. Results and discussion The results revealed that the minimum inhibitory concentration of doxycycline for the standard strain was 0.25μg/mL, whereas it exceeded 8μg/mL for the clinical isolates. Furthermore, there was a significant upregulation observed in expression levels of tet(X), tet(A), and tet(O) genes among induced strains. Interestingly, when transferring the tet(X) gene into the standard strain, its sensitivity to doxycycline decreased; however, MIC values for chlorogenic acid remained consistent between both standard and drug-resistant strains of R. anatipestifer. Moreover, we made a surprising discovery that screening passage with chlorogenic acid resulted in increased sensitivity of R. anatipestifer to doxycycline. Further analysis demonstrated a reversal in expression trends among three differentially expressed genes within induced drug resistance group after intervention with chlorogenic acid. The main objective behind this study is to investigate both killing effect exerted by chlorogenic acid on drug-resistant R. anatipestifer as well as its regulatory impact on drug resistance genes. This will provide novel insights and theoretical basis towards development of chlorogenic acid as a promising drug for treatment and control of drug resistance in R. anatipestifer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Ochoa-Sánchez LE, Martínez JL, Gil-Gil T. Evolution of Resistance against Ciprofloxacin, Tobramycin, and Trimethoprim/Sulfamethoxazole in the Environmental Opportunistic Pathogen Stenotrophomonas maltophilia. Antibiotics (Basel) 2024; 13:330. [PMID: 38667006 PMCID: PMC11047544 DOI: 10.3390/antibiotics13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that produces respiratory infections in immunosuppressed and cystic fibrosis patients. The therapeutic options to treat S. maltophilia infections are limited since it exhibits resistance to a wide variety of antibiotics such as β-lactams, aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, or carbapenems. The antibiotic combination trimethoprim/sulfamethoxazole (SXT) is the treatment of choice to combat infections caused by S. maltophilia, while ceftazidime, ciprofloxacin, or tobramycin are used in most SXT-resistant infections. In the current study, experimental evolution and whole-genome sequencing (WGS) were used to examine the evolutionary trajectories of S. maltophilia towards resistance against tobramycin, ciprofloxacin, and SXT. The genetic changes underlying antibiotic resistance, as well as the evolutionary trajectories toward that resistance, were determined. Our results determine that genomic changes in the efflux pump regulatory genes smeT and soxR are essential to confer resistance to ciprofloxacin, and the mutation in the rplA gene is significant in the resistance to tobramycin. We identified mutations in folP and the efflux pump regulator smeRV as the basis of SXT resistance. Detailed and reliable knowledge of ciprofloxacin, tobramycin, and SXT resistance is essential for safe and effective use in clinical settings. Herein, we were able to prove once again the extraordinary ability that S. maltophilia has to acquire resistance and the importance of looking for alternatives to combat this resistance.
Collapse
Affiliation(s)
- Luz Edith Ochoa-Sánchez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Han M, Chae M, Lee S, No K, Han S. Strain typing and antimicrobial susceptibility of Salmonella enterica Albany isolates from duck farms in South Korea. Heliyon 2024; 10:e27402. [PMID: 38486745 PMCID: PMC10937681 DOI: 10.1016/j.heliyon.2024.e27402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Salmonella enterica is distributed worldwide and is a common cause of bacterial food poisoning in humans and a serious public health problem. Although duck meat consumption has recently increased in Korea, studies on the epidemiological relationship between S. enterica contamination in duck farms are scarce. Salmonella enterica serovar Albany isolates recovered from duck farms were analyzed using two typing methods - IR Biotyper® (IRBT) and multilocus variable-number tandem repeat analysis (MLVA). The clustering results were compared with the epidemiological survey findings and the antimicrobial resistance profiles. From April 2019 to October 2020, 20 individual feces per farm from 5-6-week-old ducks were collected repeatedly from 105 duck farms. Salmonella spp. isolated from duck feces were identified using PCR and multilocus sequence typing to investigate the prevalence and distribution of the Salmonella serovars. The prevalence of S. enterica was 19%, and S. enterica Albany was the predominantly recovered isolate. The S. enterica Albany isolates underwent antimicrobial susceptibility testing to determine the minimum inhibitory concentration. MLVA and IRBT methods established relatedness and diversity among the S. enterica Albany isolates. Multidrug-resistant S. enterica Albany was distributed in all the farms. Antimicrobial resistance profiles reflected the duck farm characteristics and isolates recovered from the same farm showed an identical profile. Isolates repeatedly recovered from the same farm also showed identical IRBT clusters and MLVA groups. These findings suggest that the isolates remained on the duck farm and re-infected new duck flocks. Thus, proper cleaning and disinfection is required before the farms are repopulated.
Collapse
Affiliation(s)
- Mina Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Munhui Chae
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Sangkab Lee
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Kyongok No
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Seongtae Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| |
Collapse
|
8
|
Yang Z, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, He Y, Wu Z, Zhu D, Cheng A. Genome-based assessment of antimicrobial resistance reveals the lineage specificity of resistance and resistance gene profiles in Riemerella anatipestifer from China. Microbiol Spectr 2024; 12:e0313223. [PMID: 38169285 PMCID: PMC10846147 DOI: 10.1128/spectrum.03132-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is an important pathogen that causes severe systemic infections in domestic ducks, resulting in substantial economic losses for China's waterfowl industry. Controlling R. anatipestifer with antibiotics is extremely challenging due to its multidrug resistance. Notably, large-scale studies on antimicrobial resistance (AMR) and the corresponding genetic determinants in R. anatipestifer remain scarce. To solve this dilemma, more than 400 nonredundant R. anatipestifer isolates collected from 22 provinces in China between 1994 and 2021 were subjected to broth dilution antibiotic susceptibility assays, and their resistance-associated genetic determinants were characterized by whole-genome sequencing. While over 90% of the isolates was resistant to sulfamethoxazole, kanamycin, gentamicin, ofloxacin, norfloxacin, and trimethoprim, 88.48% of the isolates was resistant to the last-resort drug (tigecycline). Notably, R. anatipestifer resistance to oxacillin, norfloxacin, ofloxacin, and tetracycline was found to increase relatively over time. Genome-wide analysis revealed the alarmingly high prevalence of blaOXA-like (93.05%) and tet(X) (90.64%) genes and the uneven distribution of resistance genes among lineages. Overall, this study reveals a serious AMR situation regarding R. anatipestifer in China, with a high prevalence and high diversity of antimicrobial resistance genes, providing important data for the rational use of antibiotics in veterinary practice.IMPORTANCERiemerella anatipestifer (R. anatipestifer), an important waterfowl pathogen, has caused substantial economic losses worldwide, especially in China. Antimicrobial resistance (AMR) is a major challenge in controlling this pathogen. Although a few studies have reported antimicrobial resistance in R. anatipestifer, comprehensive data remain a gap. This study aims to address the lack of information on R. anatipestifer AMR and its genetic basis. By analyzing more than 400 isolates collected over two decades, this study reveals alarming levels of resistance to several antibiotics, including drugs of last resort. The study also revealed the lineage-specificity of resistance profiles and resistance gene profiles. Overall, this study provides new insights and updated data support for understanding AMR and its genetic determinants in R. anatipestifer.
Collapse
Affiliation(s)
- Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Yu He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People’s Republic of China, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Lyu Z, Han S, Li J, Guo Z, Geng N, Lyu C, Qin L, Li N. Epidemiological investigation and drug resistance characteristics of Riemerella anatipestifer strains from large-scale duck farms in Shandong Province, China from March 2020 to March 2022. Poult Sci 2023; 102:102759. [PMID: 37209657 PMCID: PMC10209456 DOI: 10.1016/j.psj.2023.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023] Open
Abstract
Infectious serositis is a common disease caused by Riemerella anatipestifer (R. anatipestifer) in ducks, characterized by respiratory distress, septicemia, and neurological symptoms. In this study, 1,020 samples (brain and liver) were collected from ducks with suspected R. anatipestifer infection from March 2020 to March 2022 in Shandong Province, of which 171 R. anatipestifer strains were identified by PCR and isolation culture. The serotype of all strains was analyzed, and 74 strains were subjected to drug sensitivity tests and drug resistance genes detection. The results showed that the overall prevalence rate of R. anatipestifer in Shandong Province was 16.7% (171/1,020), with most strains coming from brain samples of ducklings under 3-mo old collected from September to December each year. Histopathological examination showed that heart vessels of the diseased duck were highly dilated and filled with red blood cells, with obvious fibrin exudates outside the pericardium, and fatty degeneration of liver cells. There were 45 strains of serotype 1, 45 strains of serotype 2, 2 strains of serotype 4, 33 strains of serotype 6, 44 strains of serotype 7, and 2 strains of serotype 10. The minimum inhibitory concentration (MIC) of 10 common antibiotics against 74 representative strains was determined by the agar dilution method. It was found that 74 strains had the most severe resistance to gentamicin (77%) and fully susceptible to ceftriaxone, but the 81.1% isolated strains were multidrug resistant. Resistance genes testing of 74 R. anatipestifers showed that tetracycline resistance gene tet X had the highest detection rate of 95.9%, followed by macrolide resistance gene ermF with 77%, and the rate of β-lactam resistance gene blaTEM is the lowest (10.8%). The animal experiment of 4 R. anatipestifer strains with different serotypes showed that they had strong pathogenicity to 7-day-old ducklings, which could cause nervous symptoms, and the mortality rate was 58% to 70%. The autopsy showed obvious pathological changes. These findings of this study on R. anatipestifer will help us to understand the latest prevalence, drug resistance characteristics, and pathogenicity of R. anatipestifer in Shandong, China, and provide a scientific guide for the treatment and control of the disease.
Collapse
Affiliation(s)
- Zehao Lyu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Shanshan Han
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Zhiyun Guo
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Chuang Lyu
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Liting Qin
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
10
|
Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int J Mol Sci 2022; 23:ijms23073648. [PMID: 35409007 PMCID: PMC8998546 DOI: 10.3390/ijms23073648] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions. The high efficacy of this molecule has been demonstrated in the treatment of various animals on farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits and risks of the use of this compound in veterinary medicine. Animal health and the environmental effects of this stable antibiotic (with half-life as long as 3–9 years in various natural environments) are analyzed, as are the interesting properties of this molecule that are expressed when present in complexes with metals. Recommendations for further research on enrofloxacin are also proposed.
Collapse
|
11
|
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Dewulf J, Guardabassi L, Hilbert F, Mader R, Baldinelli F, Alvarez J. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Poultry. EFSA J 2021; 19:e07114. [PMID: 34987629 PMCID: PMC8703241 DOI: 10.2903/j.efsa.2021.7114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this opinion, the antimicrobial-resistant bacteria responsible for transmissible diseases that constitute a threat to poultry health have been assessed. The assessment has been performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate opinion. A global state of play is provided for: Avibacterium (Haemophilus) paragallinarum, Bordetella avium, Clostridium perfringens, Enterococcus faecalis and Enterococcus cecorum, Erysipelothrix rhusiopathiae, Escherichia coli, Gallibacterium spp., Mycoplasma synoviae, Ornithobacterium rhinotracheale, Pasteurella multocida, Riemerella anatipestifer and Staphylococcus aureus. Among those bacteria, EFSA identified Escherichia coli, Enterococcus faecalis and Enterococcus cecorum with ≥ 66% certainty as being the most relevant antimicrobial resistant bacteria in the EU based on the available evidence. The animal health impact of these most relevant bacteria, and their eligibility for being listed and categorised within the Animal Health Law Framework, will be assessed in separate scientific opinions.
Collapse
|
12
|
Gao K, Gao C, Huang L, Guan X, Ji W, Chang CY, McIver DJ, Deng Q, Zhong H, Xie Y, Deng L, Gao F, Zeng L, Liu H. Predominance of III/ST19 and Ib/ST10 Lineages With High Multidrug Resistance in Fluoroquinolone-Resistant Group B Streptococci Isolates in Which a New Integrative and Conjugative Element Was Identified. Front Microbiol 2021; 11:609526. [PMID: 33569045 PMCID: PMC7868321 DOI: 10.3389/fmicb.2020.609526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Fluoroquinolone (FQ)-resistant Group B Streptococcus (GBS) has been reported with considerable cross-resistance, worsening the crisis of multidrug-resistant (MDR) GBS in clinical settings. However, national epidemiological data on FQ-resistant GBS in mainland China have not been well-characterized. This study aimed to determine the prevalence of FQ resistance among GBS from neonatal invasive infections and maternal colonization in northern and southern China, to investigate the serotyping, multilocus sequence typing, and antibiotic cross-resistance, and to characterize the mutations in gyrA and parC genes in quinolone resistance-determining region (QRDR). In order to provide a comprehensive view of the location and structure of resistance genes, whole-genome sequencing on III/ST19 MDR isolates were performed. Among 426 GBS, 138 (32.4%) were FQ resistant, with higher prevalence in northern China than in southern China in both neonates (57.8%, 37/64 vs. 21.7%, 39/180) and pregnant women (50.9%, 29/57 vs. 26.4%, 33/125). Serotypes were distributed as III (48.5%), Ib (39.9%), V (6.5%), and Ia (5.1%). Sequence types were mainly ST19 (53.6%) and ST10 (39.1%), followed by ST12 (1.4%), ST17 (1.4%), ST23 (1.4%), and 0.7% each of ST27, ST188, ST197, and ST597. ST19 isolates were more prevalent in southern China than in northern China in both neonates (64.1%, 25/39 vs. 27.0%, 10/37) and pregnant women (81.8%, 27/33 vs. 41.4%, 12/29), whereas ST10 isolates were more common in northern China than in southern China in both neonates (64.9%, 24/37 vs. 20.5%, 8/39) and pregnant women (58.6%, 17/29 vs. 15.2%, 5/33). Serotype III isolates were mainly ST19 (89.6%, 60/67), while Ib isolates were largely ST10 (94.5%, 52/55). Sequencing data revealed several mutations in QRDR, including Ser81Leu in gyrA (99.2%, 130/131), Ser79Phe or Tyr in parC (76.2%, 48/63), and a previously unreported Ile218Thr and Ile219Phe double mutation pattern (49.2%, 31/63) in parC. ST10 isolates were associated with Ser79Phe (84%, 21/25), while ST19 isolates were limited to Ser79Tyr (95.7%, 22/23). A new integrative and conjugative element (ICE) harboring tetM and gyrA genes was identified in a III/ST19 isolate. This study investigates the molecular characteristics of FQ-resistant GBS in northern and southern China, emphasizing the need for continuous surveillance geographically and further research to characterize the mechanisms of ICE transfer.
Collapse
Affiliation(s)
- Kankan Gao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunyan Gao
- Clinical Laboratory, Tangshan Municipal Women and Children's Hospital, Tangshan, China
| | - Lianfen Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Guan
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Ji
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China
| | - Chien-Yi Chang
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - David J McIver
- Global Health Group, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Qiulian Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Gao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Zeng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Antimicrobial Resistance in Clinical Ureaplasma spp. and Mycoplasma hominis and Structural Mechanisms Underlying Quinolone Resistance. Antimicrob Agents Chemother 2020; 64:AAC.02560-19. [PMID: 32229497 DOI: 10.1128/aac.02560-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018 were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin, and erythromycin resistance rates were 84.69%, 51.44%, and 3.59% in U. parvum and 82.43%, 62.16%, and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and the ermB gene were identified in erythromycin-resistant Ureaplasma spp. As fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.
Collapse
|