1
|
Farzand R, Kimani MW, Mourkas E, Jama A, Clark JL, De Ste Croix M, Monteith WM, Lucidarme J, Oldfield NJ, Turner DPJ, Borrow R, Martinez-Pomares L, Sheppard SK, Bayliss CD. High-throughput phenotype-to-genotype testing of meningococcal carriage and disease isolates detects genetic determinants of disease-relevant phenotypic traits. mBio 2024; 15:e0305924. [PMID: 39475240 PMCID: PMC11633189 DOI: 10.1128/mbio.03059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Genome-wide association studies (GWAS) with binary or single phenotype data have successfully identified disease-associated genotypes and determinants of antimicrobial resistance. We describe a novel phenotype-to-genotype approach for a major bacterial pathogen that involves simultaneously testing for associations among multiple disease-related phenotypes and linkages between phenotypic variation and genetic determinants. High-throughput assays quantified variation among 163 Neisseria meningitidis serogroup W ST-11 clonal complex isolates for 11 phenotypic traits. A comparison of carriage and two disease subgroups detected significant differences between groups for eight phenotypic traits. Candidate genotypic testing indicated that indels in csw, a capsular biosynthesis gene, were associated with reduced survival in antibody-depleted heat-inactivated serum. GWAS testing detected 341 significant genetic variants (3 single-nucleotide polymorphisms and 338 unitigs) across all traits except serum bactericidal antibody-depleted assays. Growth traits were associated with variants of capsular biosynthesis genes, carbonic anhydrase, and an iron-uptake system while adhesion-linked variation was in pilC2, marR, and mutS. Multiple phase variation states or combinatorial phasotypes were associated with significant differences in multiple phenotypes. Controlling for group effects through regression and recursive random forest approaches detected group-independent effects for nalP with biofilm formation and fetA with a growth trait. Through random forest testing, nine phenotypes were weakly predictive of MenW:cc11 sub-lineage, original or 2013, for disease isolates while three characteristics separated carriage and disease isolates with >80% accuracy. This study demonstrates the power of combining high-throughput phenotypic testing of pathogenically relevant isolate collections with genomics for identifying genetic determinants of specific disease-relevant phenotypes and the pathobiology of microbial pathogens.IMPORTANCENext-generation sequencing technologies have led to the creation of extensive microbial genome sequence databases for several bacterial pathogens. Mining of these databases is now imperative for unlocking the maximum benefits of these resources. We describe a high-throughput methodology for detecting associations between phenotypic variation in multiple disease-relevant traits and a range of genetic determinants for Neisseria meningitidis, a major causative agent of meningitis and septicemia. Phenotypic variation in 11 disease-related traits was determined for 163 isolates of the hypervirulent ST-11 lineage and linked to specific single-nucleotide polymorphisms, short sequence variants, and phase variation states. Application of machine learning algorithms to our data outputs identified combinatorial phenotypic traits and genetic variants predictive of a disease association. This approach overcomes the limitations of generic meta-data, such as disease versus carriage, and provides an avenue to explore the multi-faceted nature of bacterial disease, carriage, and transmissibility traits.
Collapse
Affiliation(s)
- Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mercy W. Kimani
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Evangelos Mourkas
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abdullahi Jama
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jack L. Clark
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - William M. Monteith
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Milner Centre of Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P. J. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | | | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Persson A, Koivula T, Jacobsson S, Stenmark B. Diverse proinflammatory response in pharyngeal epithelial cells upon interaction with Neisseria meningitidis carriage and invasive isolates. BMC Infect Dis 2024; 24:286. [PMID: 38443838 PMCID: PMC10916014 DOI: 10.1186/s12879-024-09186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Invasive meningococcal disease (IMD), including sepsis and meningitis, can develop when Neisseria meningitidis bacteria breach the barrier and gain access to the circulation. While IMD is a rare outcome of bacterial exposure, colonization of the oropharynx is present in approximately 10% of the human population. This asymptomatic carriage can be long or short term, and it is unknown which determining factors regulate bacterial colonization. Despite descriptions of many bacterial virulence factors and recent advances in detailed genetic identification and characterization of bacteria, the factors mediating invasion and disease vs. asymptomatic carriage following bacterial colonization remain unknown. The pharyngeal epithelia play a role in the innate immune defense against pathogens, and the aim of this study was to investigate the proinflammatory response of pharyngeal epithelial cells following meningococcal exposure to describe the potential inflammatory mediation performed during the initial host‒pathogen interaction. Clinically relevant isolates of serogroups B, C, W and Y, derived from patients with meningococcal disease as well as asymptomatic carriers, were included in the study. RESULTS The most potent cellular response with proinflammatory secretion of TNF, IL-6, CXCL8, CCL2, IL-1β and IL-18 was found in response to invasive serogroup B isolates. This potent response pattern was also mirrored by increased bacterial adhesion to cells as well as induced cell death. It was, however, only with serogroup B isolates where the most potent cellular response was toward the IMD isolates. In contrast, the most potent cellular response using serogroup Y isolates was directed toward the carriage isolates rather than the IMD isolates. In addition, by comparing isolates from outbreaks in Sweden (epidemiologically linked and highly genetically similar), we found the most potent proinflammatory response in cells exposed to carriage isolates rather than the IMD isolates. CONCLUSION Although certain expected correlations between host‒pathogen interactions and cellular proinflammatory responses were found using IMD serogroup B isolates, our data indicate that carriage isolates invoke stronger proinflammatory activation of the epithelial lining than IMD isolates.
Collapse
Affiliation(s)
- Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Therese Koivula
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Prevalence and persistence of Neisseria meningitidis carriage in Swedish university students. Epidemiol Infect 2023; 151:e25. [PMID: 36775828 PMCID: PMC9990396 DOI: 10.1017/s0950268823000018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The bacterium Neisseria meningitidis causes life-threatening disease worldwide, typically with a clinical presentation of sepsis or meningitis, but can be carried asymptomatically as part of the normal human oropharyngeal microbiota. The aim of this study was to examine N. meningitidis carriage with regard to prevalence, risk factors for carriage, distribution of meningococcal lineages and persistence of meningococcal carriage. Throat samples and data from a self-reported questionnaire were obtained from 2744 university students (median age: 23 years) at a university in Sweden on four occasions during a 12-month period. Meningococcal isolates were characterised using whole-genome sequencing. The carriage rate among the students was 9.1% (319/3488; 95% CI 8.2-10.1). Factors associated with higher carriage rate were age ≤22 years, previous tonsillectomy, cigarette smoking, drinking alcohol and attending parties, pubs and clubs. Female gender and sharing a household with children aged 0-9 years were associated with lower carriage. The most frequent genogroups were capsule null locus (cnl), group B and group Y and the most commonly identified clonal complexes (cc) were cc198 and cc23. Persistent carriage with the same meningococcal strain for 12 months was observed in two students. Follow-up times exceeding 12 months are recommended for future studies investigating long-term carriage of N. meningitidis.
Collapse
|
5
|
Maynard-Smith L, Derrick JP, Borrow R, Lucidarme J, Maiden MCJ, Heyderman RS, Harrison OB. Genome-Wide Association Studies Identify an Association of Transferrin Binding Protein B Variation and Invasive Serogroup Y Meningococcal Disease in Older Adults. J Infect Dis 2022; 226:2204-2214. [PMID: 36322504 PMCID: PMC9748998 DOI: 10.1093/infdis/jiac430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Neisseria meningitidis serogroup Y, especially ST-23 clonal complex (Y:cc23), represents a larger proportion of invasive meningococcal disease (IMD) in older adults compared to younger individuals. This study explored the meningococcal genetic variation underlying this association. METHODS Maximum-likelihood phylogenies and the pangenome were analyzed using whole-genome sequence (WGS) data from 200 Y:cc23 isolates in the Neisseria PubMLST database. Genome-wide association studies (GWAS) were performed on WGS data from 250 Y:cc23 isolates from individuals with IMD aged ≥65 years versus < 65 years. RESULTS Y:cc23 meningococcal variants did not cluster by age group or disease phenotype in phylogenetic analyses. Pangenome comparisons found no differences in presence or absence of genes in IMD isolates from the different age groups. GWAS identified differences in nucleotide polymorphisms within the transferrin-binding protein B (tbpB) gene in isolates from individuals ≥65 years of age. TbpB structure modelling suggests these may impact binding of human transferrin. CONCLUSIONS These data suggest differential iron scavenging capacity amongst Y:cc23 meningococci isolated from older compared to younger patients. Iron acquisition is essential for many bacterial pathogens including the meningococcus. These polymorphisms may facilitate colonization, thereby increasing the risk of disease in vulnerable older people with altered nasopharyngeal microbiomes and nutritional status.
Collapse
Affiliation(s)
- Laura Maynard-Smith
- Correspondence: Laura Maynard-Smith, MBBS, Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK ()
| | - Jeremy P Derrick
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | |
Collapse
|
6
|
Chiarot E, Pizza M. Animal models in vaccinology: state of the art and future perspectives for an animal-free approach. Curr Opin Microbiol 2021; 66:46-55. [PMID: 34953265 DOI: 10.1016/j.mib.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Vaccine discovery and development is mainly driven by studies on immunogenicity and safety based on the appropriate animal models. In this review we will describe the importance of animal models in vaccinology, from research and development to pre-licensure and post-licensure commitments with particular emphasis on the advantages and limitations of each animal species. Finally, we will describe the most modern technologies, the new in vitro and ex vivo models and the new advances in the field which may drive into a new era of 'animal free' vaccinology.
Collapse
|
7
|
Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice. Pathogens 2021; 10:pathogens10070906. [PMID: 34358056 PMCID: PMC8308890 DOI: 10.3390/pathogens10070906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis causes a devastating invasive disease but is also a normal colonizer of the human nasopharynx. Due to the rapid progression of disease, the best tool to protect individuals against meningococcal infections is immunization. Clinical experience with polysaccharide conjugate vaccines has revealed that an ideal meningococcal vaccine must prevent both invasive disease and nasal colonization, which confers herd immunity. However, not all meningococcal vaccines are equal in their ability to prevent nasal colonization, for unknown reasons. Herein, we describe recent efforts to utilize humanized mouse models to understand the impact of different meningococcal vaccines on nasal colonization. These mice are susceptible to nasal colonization, and they become immune following live nasal infection or immunization with matched capsule-conjugate or protein-based vaccines, replicating findings from human work. We bring together insights regarding meningococcal colonization and immunity from clinical work with findings using humanized mouse models, providing new perspective into the different determinants of mucosal versus systemic immunity. Then, we use this as a framework to help focus future studies toward understanding key mechanistic aspects left unresolved, including the bacterial factors required for colonization and immune evasion, determinants of nasal mucosal protection, and characteristics of an ideal meningococcal vaccine.
Collapse
|
8
|
Atypical presentation of Neisseria meningitidis serogroup W disease is associated with the introduction of the 2013 strain. Epidemiol Infect 2021; 149:e126. [PMID: 33910672 PMCID: PMC8161285 DOI: 10.1017/s0950268821001035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since 2015, the incidence of invasive meningococcal disease (IMD) caused by serogroup W (MenW) has increased in Sweden, due to the introduction of the 2013 strain belonging to clonal complex 11. The aim of this study was to describe the clinical presentation of MenW infections, in particular the 2013 strain, including genetic associations. Medical records of confirmed MenW IMD cases in Sweden during the years 1995–2019 (n = 113) were retrospectively reviewed and the clinical data analysed according to strain. Of all MenW patients, bacteraemia without the focus of infection was seen in 44%, bacteraemic pneumonia in 26%, meningitis in 13% and epiglottitis in 8%, gastrointestinal symptoms in 48% and 4% presented with petechiae. Phylogenetic analysis was used for possible links between genetic relationship and clinical picture. The 2013 strain infections, particularly in one cluster, were associated with more severe disease compared with other MenW infections. The patients with 2013 strain infections (n = 68) were older (52 years vs. 25 years for other strains), presented more often with diarrhoea as an atypical presentation (P = 0.045) and were more frequently admitted for intensive care (P = 0.032). There is a risk that the atypical clinical presentation of MenW infections, with predominantly gastrointestinal or respiratory symptoms rather than neck stiffness or petechiae, may lead to delay in life-saving treatment.
Collapse
|