1
|
Granados-Tristán AL, Carrillo-Tripp M, Hernández-Luna CE, Herrera-Rodulfo A, González-Escalante LA, Arriaga-Guerrero AL, Silva-Ramírez B, Escobedo-Guajardo BL, Mercado-Hernández R, Bermúdez de León M, Peñuelas-Urquides K. Mycobacterium susceptibility to ivermectin by inhibition of eccD3, an ESX-3 secretion system component. PLoS Comput Biol 2025; 21:e1012936. [PMID: 40245093 PMCID: PMC12005495 DOI: 10.1371/journal.pcbi.1012936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Drug-resistant tuberculosis is a pressing global health issue that requires the development of new drugs or the identification of new therapeutic targets. The ESX-3 secretion system is essential for the Mycobacterium tuberculosis growth and plays a role in iron/zinc homeostasis and virulence. The aim of this study was to evaluate the quaternary interface of EccD3, a component of the ESX-3 secretion system, and to evaluate the association of an eccD3 mutant with drug resistance. The molecular structures of EccD3 protein and other ESX-3 secretion system proteins of the M. tuberculosis were predicted based in homology with the Mycolicibacterium smegmatis tertiary protein structures. According to the in silico results, selamectin, avermectin, ivermectin, and moxidectin were selected as prospective drugs. Selamectin and moxidectin had favorable ΔG values for the EccB3 and EccD3 dimer interfaces, whereas the ESX-3 Protomer 1 interface had the best ΔG + with avermectin, ivermectin, and moxidectin. Furthermore, ivermectin susceptibility increased when the eccD3 gene was inhibited using CRISPRi in M. smegmatis. Blockage of EccD3 increased the ivermectin action, but the modest changes observed may be explained by the compensatory mechanisms or other ivermectin targets in absence of this Esx3 component. Further in vitro and preclinical studies are required to validate our findings.
Collapse
Affiliation(s)
- Ana Laura Granados-Tristán
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Nuevo León, México
| | - Mauricio Carrillo-Tripp
- Laboratorio de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Carlos Eduardo Hernández-Luna
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Nuevo León, México
| | - Aldo Herrera-Rodulfo
- Laboratorio de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| | - Ana Leticia Arriaga-Guerrero
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Nuevo León, México
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogénetica, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| | - Brenda Leticia Escobedo-Guajardo
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| | - Roberto Mercado-Hernández
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Nuevo León, México
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, México
| |
Collapse
|
2
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
3
|
Grininger C, Leypold M, Aschauer P, Pavkov-Keller T, Riegler-Berket L, Breinbauer R, Oberer M. Structural Changes in the Cap of Rv0183/mtbMGL Modulate the Shape of the Binding Pocket. Biomolecules 2021; 11:1299. [PMID: 34572512 PMCID: PMC8472722 DOI: 10.3390/biom11091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis continues to be a major threat to the human population. Global efforts to eradicate the disease are ongoing but are hampered by the increasing occurrence of multidrug-resistant strains of Mycobacterium tuberculosis. Therefore, the development of new treatment, and the exploration of new druggable targets and treatment strategies, are of high importance. Rv0183/mtbMGL, is a monoacylglycerol lipase of M. tuberculosis and it is involved in providing fatty acids and glycerol as building blocks and as an energy source. Since the lipase is expressed during the dormant and active phase of an infection, Rv0183/mtbMGL is an interesting target for inhibition. In this work, we determined the crystal structures of a surface-entropy reduced variant K74A Rv0183/mtbMGL in its free form and in complex with a substrate mimicking inhibitor. The two structures reveal conformational changes in the cap region that forms a major part of the substrate/inhibitor binding region. We present a completely closed conformation in the free form and semi-closed conformation in the ligand-bound form. These conformations differ from the previously published, completely open conformation of Rv0183/mtbMGL. Thus, this work demonstrates the high conformational plasticity of the cap from open to closed conformations and provides useful insights into changes in the substrate-binding pocket, the target of potential small-molecule inhibitors.
Collapse
Affiliation(s)
| | - Mario Leypold
- Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioHealth Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | | | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioHealth Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Kumari B, Kaur J, Maan P, Kumar A, Kaur J. The lipolytic activity of LipJ, a stress-induced enzyme, is regulated by its C-terminal adenylate cyclase domain. Future Microbiol 2021; 16:487-507. [PMID: 33960821 DOI: 10.2217/fmb-2020-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The confirmation of lipolytic activity and role of Rv1900c in the Mycobacterium physiology Methods: rv1900c/N-terminus domain (rv1900NT) were cloned in pET28a/Escherichia coli, purified by affinity chromatography and characterized. Results: A zone of clearance on tributyrin-agar and activity with pNP-decanoate confirmed the lipolytic activity of Rv1900c. The Rv1900NT demonstrated higher enzyme specific activity, Vmax and kcat, but Rv1900c was more thermostable. The lipolytic activity of Rv1900c decreased in presence of ATP. Mycobacterium smegmatis expressed rv1900c/rv1900NT-altered colony morphology, growth, cell surface properties and survival under stress conditions. The effect was more prominent with Rv1900NT as compared with Rv1900c. Conclusion: The study confirmed the lipolytic activity of Rv1900c and suggested its regulation by the adenylate cyclase domain and role in the intracellular survival of bacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Pratibha Maan
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India.,Department of Experimental Medicine and Biotechnology PGIMER, Chandigarh, India
| | - Arbind Kumar
- COVID Testing Facility, CSIR-Institute of Himalayan Bioresources & Technology, Palampur, Himachal Pradesh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Mycobacterium tuberculosis Small RNA MTS1338 Confers Pathogenic Properties to Non-Pathogenic Mycobacterium smegmatis. Microorganisms 2021; 9:microorganisms9020414. [PMID: 33671144 PMCID: PMC7921967 DOI: 10.3390/microorganisms9020414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Small non-coding RNAs play a key role in bacterial adaptation to various stresses. Mycobacterium tuberculosis small RNA MTS1338 is upregulated during mycobacteria infection of macrophages, suggesting its involvement in the interaction of the pathogen with the host. In this study, we explored the functional effects of MTS1338 by expressing it in non-pathogenic Mycobacterium smegmatis that lacks the MTS1338 gene. The results indicated that MTS1338 slowed the growth of the recombinant mycobacteria in culture and increased their survival in RAW 264.7 macrophages, where the MTS1338-expressing strain significantly (p < 0.05) reduced the number of mature phagolysosomes and changed the production of cytokines IL-1β, IL-6, IL-10, IL-12, TGF-β, and TNF-α compared to those of the control strain. Proteomic and secretomic profiling of recombinant and control strains revealed differential expression of proteins involved in the synthesis of main cell wall components and in the regulation of iron metabolism (ESX-3 secretion system) and response to hypoxia (furA, whiB4, phoP). These effects of MTS1338 expression are characteristic for M. tuberculosis during infection, suggesting that in pathogenic mycobacteria MTS1338 plays the role of a virulence factor supporting the residence of M. tuberculosis in the host.
Collapse
|