1
|
Hahaj-Siembida A, Nowakiewicz A, Greguła-Kania M, Bochniarz M, Trościańczyk A, Osińska M. Characteristics of drug-resistant staphylococci isolated from milk of lambed ewes during the perinatal period. J Vet Res 2025; 69:41-50. [PMID: 40144065 PMCID: PMC11936087 DOI: 10.2478/jvetres-2025-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Staphylococci are still a challenge in veterinary medicine, as they are one of the aetiological factors causing clinical and subclinical mastitis in small ruminants. The aim of the study was to analyse the occurrence of staphylococci in milk obtained from Świniarka (SW) and Uhruska (UHR) sheep and to characterise their drug resistance and virulence. Material and Methods In total, 50 milk samples were collected from ewes seven days after parturition. Drug susceptibility analysis was performed based on Clinical and Laboratory Standards Institute standards and demonstration of the presence of resistance genes was attempted. Results Staphylococcus spp. strains were identified in 70% of the samples, and 57.2% of the strains were S. aureus. Most of the tested strains (88.6%) were resistant to at least one antimicrobial, and resistance to tetracycline and erythromycin was the dominant type in S. aureus strains. Coagulase-negative species (CoNS) exhibited resistance predominantly to penicillin, cefoxitin and tetracycline (86.6%, 73.3% and 46.6%, respectively).The presence of the mecC gene was detected in four cefoxitin resistant strains. In tetracycline- and chloramphenicol-resistant strains, phenotypic and genotypic resistance was statistically significantly more common among strains isolated from UHR than SW. Conclusion The present study highlights the problem of potential subclinical mastitis caused by drug-resistant strains of S. aureus and other CoNS species in lambed ewes. However, the occurrence of virulence factors in these strains is very rare.
Collapse
Affiliation(s)
- Agata Hahaj-Siembida
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Aneta Nowakiewicz
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Monika Greguła-Kania
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences, 20-950Lublin, Poland
| | - Mariola Bochniarz
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Aleksandra Trościańczyk
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Marcelina Osińska
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| |
Collapse
|
2
|
Wang F, Wang H, Zhang L, Ji T, Gao Y, Wang Y, Dong S, Gao X. An improved recombinase polymerase amplification assay for the visual detection of Staphylococcus epidermidis with lateral flow strips. Clin Chim Acta 2023; 548:117455. [PMID: 37394163 DOI: 10.1016/j.cca.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogenic microorganism that is an important cause of cross-infection in hospitals. The development of rapid and effective detection techniques is important for its control. The application of traditional identification and PCR-based methods is limited by their requirements for both laboratory instrumentation and trained personnel. To overcome this issue, we developed a fast detection approach for S. epidermidis that was based on recombinase polymerase amplification (RPA) and lateral flow strips (LFS). First, five pairs of primers were designed for molecular diagnosis using the sesB gene as the target, and were screened for their amplification performance and the formation of primer dimers. Specific probes were then designed based on the best primer pairs screened, which were susceptible to primer-dependent artifacts and generated false-positive signals when used for LFS detection. This weakness of the LFS assay was overcome by modifying the sequences of the primers and probes. The efficacy of these measures was rigorously tested, and improved the RPA-LFS system. Standardized systems completed the amplification process within 25 min at a constant temperature of 37 °C, followed by visualization of the LFS within 3 min. The approach was very sensitive (with a detection limit of 8.91 CFU/μL), with very good interspecies specificity. In the analysis of clinical samples, the approach produced results consistent with PCR and 97.78% consistent with the culture-biochemical method, with a kappa index of 0.938. Our method was rapid, accurate, and less dependent on equipment and trained personnel than traditional methods, and provided information for the timely development of rational antimicrobial treatment plans. It has high potential utility in clinical settings, particularly in resource-constrained locations.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Hui Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Linhai Zhang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Tuo Ji
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yuzhi Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China
| | - Yan Wang
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China
| | - Shude Dong
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China.
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University), Lianyungang 222023, China; Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang 222023, China.
| |
Collapse
|
3
|
Kosikowska U, Dłuski DF, Pietras-Ożga D, Leszczyńska-Gorzelak B, Andrzejczuk S. Prevalence of Culturable Bacteria and Yeasts in the Nasopharynx Microbiota during the Physiological Course of Pregnancy. J Clin Med 2023; 12:4447. [PMID: 37445482 DOI: 10.3390/jcm12134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to compare the prevalence of the nasopharyngeal carriage of culturable microorganisms in the microbiota of asymptomatic women with a physiological pregnancy (PW) and nonpregnant women (NPW). Nasopharyngeal swabs were collected from 53 PW and 30 NPW to detect bacterial and fungal colonization. Isolates were identified using the culture method and the MALDI-TOF MS technique. The nasopharyngeal microbiota (NPM) partially differed between PW and NPW. These differences in the frequency of nasopharyngeal colonization between the PW and NPW groups were not statistically significant (p > 0.05); all cases were colonized by bacteria and only two cases in the PW group were colonized by yeasts, namely, Rhodotorula spp. High levels of staphylococcal colonization, including predominantly coagulase-negative staphylococci and S. aureus in the nasopharyngeal sample, were present in both groups. The reduced number of Gram-negative rods colonized in the cases studied was seen in samples from the NPW group, particularly with Enterobacterales, and anaerobic Cutibacterium spp. were isolated only in the PW group (p < 0.05). Moreover, a higher carriage rate of Enterobacter aerogenes colonization was statistically significant (p < 0.05) and correlated with the NPW group. Pregnancy may disturb the composition of the NPM represented by commensals and opportunistic bacteria and promote yeast colonization as compared to nonpregnant women.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | | | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Andrzejczuk S, Cygan M, Dłuski D, Stępień-Pyśniak D, Kosikowska U. Staphylococcal Resistance Patterns, blaZ and SCC mec Cassette Genes in the Nasopharyngeal Microbiota of Pregnant Women. Int J Mol Sci 2023; 24:ijms24097980. [PMID: 37175688 PMCID: PMC10178740 DOI: 10.3390/ijms24097980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance in Staphylococcus spp. colonising the nasopharynx can create risk factors of therapeutic treatment failure or prophylaxis in pregnant women. Resistance is mostly encoded on plasmids (e.g., blaZ gene for penicillinase synthesis) or chromosomes (e.g., mecA and mecC for methicillin resistance). The mecA gene is part of the chromosomal mec gene cassette (SCCmec), which is also located on the plasmid. The disc diffusion method for the selected drugs (beta-lactams, fluoroquinolones, streptogramins, aminoglicosides, macrolides, oxasolidinones, tetracyclines and other groups) was used. PCR for blaZ, mecA and mecC genes and SCCmec cassette detection and typing were performed. S. aureus (54.4%) and S. epidermidis (27.9%) were the most prevalent and showed the highest diversity of resistance profiles. The blaZ, mecA and mecC genes were reported in 95.6%, 20.6% and 1.5% of isolates, respectively. The highest resistance was found to beta-lactams, commonly used during pregnancy. Resistance to a variety of antimicrobials, including benzylpenicillin resistance in blaZ-positive isolates, and the existence of a very high diversity of SCCmec cassette structures in all staphylococci selected from the nasopharyngeal microbiota of pregnant women were observed for the first time. Knowledge of the prevalence of antimicrobial-resistant staphylococci in the nasopharynx of pregnant women may be important for the appropriate treatment or prophylaxis of this group of patients.
Collapse
Affiliation(s)
- Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, W. Chodźki Str. 1, 20-093 Lublin, Poland
| | - Monika Cygan
- Student Research Group at the Department of Pharmaceutical Microbiology, Medical University of Lublin, W. Chodźki Str. 1, 20-093 Lublin, Poland
| | - Dominik Dłuski
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego Str. 8, 20-090 Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, W. Chodźki Str. 1, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics (Basel) 2022; 11:antibiotics11040427. [PMID: 35453179 PMCID: PMC9024665 DOI: 10.3390/antibiotics11040427] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a major threat to public health globally. Accurate and rapid detection of resistance to antimicrobial drugs, and subsequent appropriate antimicrobial treatment, combined with antimicrobial stewardship, are essential for controlling the emergence and spread of AMR. This article reviews common antimicrobial susceptibility testing (AST) methods and relevant issues concerning the advantages and disadvantages of each method. Although accurate, classic technologies used in clinical microbiology to profile antimicrobial susceptibility are time-consuming and relatively expensive. As a result, physicians often prescribe empirical antimicrobial therapies and broad-spectrum antibiotics. Although recently developed AST systems have shown advantages over traditional methods in terms of testing speed and the potential for providing a deeper insight into resistance mechanisms, extensive validation is required to translate these methodologies to clinical practice. With a continuous increase in antimicrobial resistance, additional efforts are needed to develop innovative, rapid, accurate, and portable diagnostic tools for AST. The wide implementation of novel devices would enable the identification of the optimal treatment approaches and the surveillance of antibiotic resistance in health, agriculture, and the environment, allowing monitoring and better tackling the emergence of AMR.
Collapse
|