1
|
Ronzetti M, Simeonov A. A comprehensive update on the application of high-throughput fluorescence imaging for novel drug discovery. Expert Opin Drug Discov 2025; 20:785-797. [PMID: 40305163 PMCID: PMC12105877 DOI: 10.1080/17460441.2025.2499123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION High-throughput fluorescence imaging (HTFI) is revolutionizing drug discovery by enabling rapid and precise detection of biological targets and cellular processes. Recent advances in fluorescence imaging technologies now provide unprecedented sensitivity, resolution, and throughput. Integration of artificial intelligence (AI) and machine learning (ML) into HTFI workflows significantly enhances data processing, aiding in hit identification, pattern recognition, and mechanistic understanding. AREAS COVERED This review outlines recent technological developments, integration strategies, and emerging applications of HTFI. It emphasizes HTFI's role in phenotypic screening, especially for complex diseases such as cancer, neurodegenerative disorders, and viral infections. Additionally, it highlights advances in 3D culture systems, organoids, and organ-on-a-chip technologies, which facilitate physiologically relevant testing, improved predictive accuracy, and translational potential, alongside innovative molecular probes and biosensors. EXPERT OPINION Despite its advancements, HTFI faces ongoing challenges, including data standardization, integration with multi-omics approaches, and scalability of advanced models. However, recent progress in organoid and 3D modeling technologies has enhanced the physiological relevance of HTFI assays, complemented by sophisticated AI and ML-driven data analysis techniques.
Collapse
Affiliation(s)
- Michael Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
2
|
Bie S, Yuan H, Shi C, Li C, Lu M, Yao Z, Liu R, Lu D, Ma T, Yu H. Antibiofilm activity of Plumbagin against Staphylococcus aureus. Sci Rep 2025; 15:7948. [PMID: 40055436 PMCID: PMC11889106 DOI: 10.1038/s41598-025-92435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
In chronic infections caused by Staphylococcus aureus, biofilm is a major virulence factor. In Staphylococcus aureus biofilms, bacteria are embedded in a matrix of extracellular polymeric substances and are highly tolerant to antimicrobial drugs. However, the lack of effective solutions to inhibit biofilm formation remains a challenge, and the mechanism of inhibition of biofilm formation targeting extracellular polymeric substances is unclear. The aim of the present study was to investigate the inhibitory mechanisms of Plumbagin against Staphylococcus aureus biofilms formation by affecting secretion of extracellular polymeric substances using the high-content screening. Our results showed Plumbagin (16 µg/mL) inhibited biofilm formation, revealing a significant reduction in both biomass and bacterial metabolic activity, and disrupted the biofilm structure, leading to a significant decrease in both biological volume and average thickness (P ≤ 0.01). High-content screening imaging indicated that the Plumbagin treatment induced alterations in the extracellular polymeric substances of Staphylococcus aureus biofilm, significantly reducing the quantities of extracellular polysaccharide, proteins and extracellular DNA. Interestingly, extracellular DNA within the matrix was found to be the most sensitive to Plumbagin treatment. Extracellular DNA formation was significantly inhibited at a concentration of 4 µg/mL, whereas the inhibition of extracellular polysaccharide and proteins required a higher concentration of 8 µg/mL. Overall, these results demonstrated the inhibitory effects of Plumbagin on Staphylococcus aureus biofilm formation and extracellular polymeric substances secretion, suggesting that extracellular DNA may be a potential target for the anti-biofilm activity of Plumbagin. These findings will provide new insights into the mode of action of Plumbagin in treating infections caused by Staphylococcus aureus biofilms.
Collapse
Affiliation(s)
- Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, China.
| | - Hui Yuan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chen Shi
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chunshuang Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ming Lu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ze Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ruobing Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ding Lu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tenglong Ma
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Craske MW, Wilson JS, Fogg PCM. Gene transfer agents: structural and functional properties of domesticated viruses. Trends Microbiol 2024; 32:1200-1211. [PMID: 38806321 DOI: 10.1016/j.tim.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Horizontal exchange of DNA between bacteria and archaea is prevalent and has major potential implications for genome evolution, plasticity, and population fitness. Several transfer mechanisms have been identified, including gene transfer agents (GTAs). GTAs are intricately regulated domesticated viruses that package host DNA into virus-like capsids and transfer this DNA throughout the bacterial community. Several important advances have recently been made in our understanding of these unusual particles. In this review, we highlight some of these findings, primarily for the model GTA produced by Rhodobacter capsulatus but also for newly identified GTA producers. We provide key insights into these important genetic elements, including the differences between GTAs from their ancestral bacteriophages, their regulation and control, and their elusive evolutionary function.
Collapse
Affiliation(s)
| | - Jason S Wilson
- Biology Department, University of York, York YO10 5DD, UK; York Structural Biology Laboratory (YSBL), University of York, York YO10 5DD, UK
| | - Paul C M Fogg
- Biology Department, University of York, York YO10 5DD, UK; York Biomedical Research Institute (YBRI), University of York, York YO10 5NG, UK.
| |
Collapse
|
4
|
Bundurus IA, Balta I, Pet I, Stef L, Popescu CA, McCleery D, Lemon J, Callaway T, Douglas A, Corcionivoschi N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: persistence and inhibition in poultry environments. Poult Sci 2024; 103:104328. [PMID: 39366290 PMCID: PMC11483643 DOI: 10.1016/j.psj.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Campylobacter species, predominantly Campylobacter jejuni, remains a significant zoonotic pathogen worldwide, with the poultry sector being the primary vector for human transmission. In recent years. there has been a notable rise in the incidence of human campylobacteriosis, necessitating a deeper understanding of the pathogen's survival mechanisms and transmission dynamics. Biofilm presence significantly contributes to C. jejuni persistence in poultry and subsequent food product contamination, and this review describes the intricate processes involved in biofilm formation. The ability of Campylobacter to form biofilms on various surfaces, including stainless steel, plastic, and glass, is a critical survival strategy. Campylobacter biofilms, with their remarkable resilience, protect the pathogen from environmental stresses such as desiccation, pH extremes, biocides and sanitizing agents. This review explores the molecular and genetic mechanisms of C. jejuni biofilm formation, highlighting regulatory genes involved in motility, chemotaxis, and stress responses. Flagellar proteins, particularly flaA, flaB, flaG, and adhesins like cadF and flpA, are identified as the main molecular components in biofilm development. The role of mixed-species biofilms, where C. jejuni integrates into existing biofilms of other bacteria to enhance pathogen resilience, is also discussed. This review also considers alternative interventions to control C. jejuni in poultry production, in the context of increasing antibiotic resistance. It explores the effectiveness of prebiotics, probiotics, synbiotics, bacteriocins, bacteriophages, vaccines, and organic acids, with a focus on their mechanisms of action in reducing bacterial colonization and biofilm formation. Studies show that mixtures of organic acids and compounds like Carvacrol and Eugenol significantly downregulate genes linked with motility and adhesion, thereby disrupting biofilm integrity. It discusses the impact of environmental factors, such as temperature and oxygen levels on biofilm formation, providing insights into how industrial conditions can be manipulated to reduce contamination. This paper stresses the need for a multifaceted approach to control Campylobacter in poultry, integrating molecular and genetic insights with practical interventions. By advancing our understanding of biofilm dynamics and gene regulation, we aim to inform the development of more effective strategies to enhance food safety and protect public health.
Collapse
Affiliation(s)
- Iulia A Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - David McCleery
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, Northern Ireland BT3 9ED, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania; Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK; Academy of Romanian Scientists, Bucharest 050044, Romania.
| |
Collapse
|
5
|
Pavlinjek N, Klančnik A, Sabotič J. Evaluation of physical and chemical isolation methods to extract and purify Campylobacter jejuni extracellular polymeric substances. Front Microbiol 2024; 15:1488114. [PMID: 39526143 PMCID: PMC11543439 DOI: 10.3389/fmicb.2024.1488114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenic bacterium Campylobacter jejuni is a major food safety concern as it can form biofilms that increase its survival and infective potential. Biofilms consist of microbial cells and extracellular matrix (ECM), which is made of water and extracellular polymeric substances (EPS), which are critical for structural integrity and pathogenicity. The aim of this study was to optimize a protocol for the isolation of C. jejuni ECM. We employed eight physical and chemical isolation methods to extract and purify ECM, followed by different qualitative and quantitative analyses using gel electrophoresis and spectroscopy. This comprehensive approach enabled the evaluation of ECM composition in terms of polysaccharides, proteins, and extracellular DNA. The isolation methods resulted in different yields and purities of the extracted ECM components. Centrifugation in combination with chemical treatments proved to be most effective, isolating higher concentrations of polysaccharides and proteins. Additionally, extraction with ether solution facilitated the recovery of high-molecular-weight extracellular DNA. Overall, we provide a refined methodology for ECM extraction from C. jejuni. As polysaccharides and proteins participate in biofilm stability and microbial communication, and extracellular DNA participates in genetic exchange and virulence, our study contributes towards a better understanding of the persistence of this pathogen in the food industry.
Collapse
Affiliation(s)
- Natalija Pavlinjek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
6
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|