1
|
Bedenić B, Luxner J, Zarfel G, Benčić A, Sardelić S, Anušić M, Vraneš J, Dobretzberger V, Barišić I, Grisold A. Characterization of Klebsiella pneumoniae Isolates Resistant to Cefiderocol from Hospitals and Outpatient Settings in Croatia. Antibiotics (Basel) 2025; 14:154. [PMID: 40001398 PMCID: PMC11851357 DOI: 10.3390/antibiotics14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES We conducted this study to evaluate the genotypic and phenotypic profiles of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates, exhibiting resistance to cefiderocol (FDC), focusing on antibiotic susceptibility, β-lactamase production, the genetic environment of blaCARB and blaESBL genes and molecular epidemiology. FDC is now a last-line antibiotic for severe infections due to CRKP. METHODS Susceptibility to a wide range of antibiotics was determined by the disk diffusion and broth microdilution method. Carbapenemases were screened by a modified Hodge test while carbapenem hydrolysis was investigated using mCIM and eCIM tests. The screening for β-lactamase and fluoroquinolone cluster resistance genes was carried out by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). An inter-array genotyping CarbaResist test and whole genome sequencing (WGS) were applied on selected isolates. RESULTS All of the 31 isolates studied exhibited high-level resistance to amoxicillin-clavulanate, piperacillin-tazobactam, cefuroxime, expanded-spectrum cephalosporins (ESC), cefepime, ceftolozan-tazobactam and ciprofloxacin and the majority to gentamicin, and amikacin. Colistin and ceftazidime-avibactam preserved activity against 71% and 87% of the isolates, respectively. The combined disk method with clavulanic acid was positive in all but one isolate, indicating the production of an ESBL. Twenty-eight isolates carried one single carbapenemase-encoding gene, whereas three harbored double blaCARB genes. Among the studied isolates, 61% carried blaOXA-48, 29% blaKPC and 12.9% blaNDM genes. The inter-array genotyping CarbaResist test and WGS identified additional aminoglycoside-, sulphonamide- and trimethoprim-resistance genes. CONCLUSION To our knowledge, this is the first study on FDC resistance in Croatia. The diffusion of FDC-resistant isolates was detected in both hospital and outpatient settings, emphasizing the need for a "One Health" approach.
Collapse
Affiliation(s)
- Branka Bedenić
- Biomedical Research Center-BIMIS, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Clinical Department for Clinical Microbiology and Infection Control and Prevention, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Josefa Luxner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8036 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Gernot Zarfel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8036 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Ana Benčić
- Department of Gynecology and Obstetrics, University Hospital Centre Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Sanda Sardelić
- Department of Microbiology and Parasitology, University Hospital of Split, 21000 Split, Croatia;
| | - Maja Anušić
- Department of Clinical Microbiology, Dr. Andrija Štampar Teaching Institute of Public Health Zagreb, 10000 Zagreb, Croatia; (M.A.); (J.V.)
| | - Jasmina Vraneš
- Department of Clinical Microbiology, Dr. Andrija Štampar Teaching Institute of Public Health Zagreb, 10000 Zagreb, Croatia; (M.A.); (J.V.)
- Department of Medical Microbiology and Parasitology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Verena Dobretzberger
- Department of Molecular Diagnostics, Austrian Institute for Technology, 1210 Vienna, Austria; (V.D.); (I.B.)
| | - Ivan Barišić
- Department of Molecular Diagnostics, Austrian Institute for Technology, 1210 Vienna, Austria; (V.D.); (I.B.)
| | - Andrea Grisold
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8036 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| |
Collapse
|
2
|
Onyeji CB, Enitan SS, Kemiki OA, Igwe AC, Adeniyi AA, Iduh MU, Itodo GE, Okuneye AO, Adamson PO, Kolawole MF. Molecular detection of OXA-48 and NDM-1 carbapenemase genes among clinical isolates of Klebsiella pneumoniae recovered from patients attending a private tertiary hospital in Southwestern Nigeria. BMC Infect Dis 2024; 24:970. [PMID: 39271986 PMCID: PMC11395985 DOI: 10.1186/s12879-024-09869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
There have been increasing reports of Klebsiella pneumoniae resistant to β-lactam antibiotics. This study aimed to determine the prevalence of some selected carbapenemase genes among clinical isolates of Klebsiella pneumoniae recovered from patients attending a private tertiary hospital in Southwestern Nigeria. The study was conducted over two months (February-March 2024). A total of 50 clinical isolates of Klebsiella pneumoniae from different clinical specimens were obtained from the Medical Microbiology Department, Babcock University Teaching Hospital (BUTH). The clinical isolates were then characterized using standard microbiological procedures and were tested for susceptibility to meropenem and other classes of antibiotics according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase Chain Reaction (PCR) detection for OXA-48 and NDM-1 carbapenemase genes was performed on the 50 clinical isolates. PCR analysis showed that 9 (18%) clinical isolates were positive for the OXA-48 gene, 22 (44%) were positive for the NDM-1 gene, 4 (8%) possessed both the OXA-48 and NDM-1 genes, and 23 (46%) possessed neither the OXA-48 nor NDM-1 genes. Antibiotic Susceptibility Testing (AST) revealed that all the clinical isolates were resistant to meropenem. In conclusion, this study demonstrates the presence of OXA-48 and NDM-1 genes in clinical isolates of Klebsiella pneumoniae recovered from patients attending a private tertiary hospital in Southwestern Nigeria, highlighting the role of ESBL (extended-spectrum beta-lactamase) as a major resistance mechanism alongside other mechanisms. Population-based surveillance programs should be implemented to monitor the prevalence and epidemiology of Klebsiella pneumoniae infections at the community level, facilitating early detection of outbreaks and identification of emerging antimicrobial resistance patterns. CORE TIP: This study highlights the significant prevalence of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae clinical isolates in a private tertiary hospital in Southwestern Nigeria, with 44% and 18% of isolates harboring these genes, respectively. Notably, 46% of isolates were resistant to carbapenems despite lacking these genes, suggesting alternative resistance mechanisms. The findings underscore the urgent need for enhanced surveillance, infection control measures, and antibiotic stewardship programs to combat the spread of multidrug-resistant Klebsiella pneumoniae in healthcare settings.
Collapse
Affiliation(s)
- Chisom Blossom Onyeji
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Seyi Samson Enitan
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Olalekan Ademola Kemiki
- Molecular and Tissue Culture Laboratory, Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - Abigail Chinyere Igwe
- Molecular and Tissue Culture Laboratory, Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | | | - Michael Unata Iduh
- Department of Medical Microbiology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Sokoto State, Nigeria
| | - Grace Eleojo Itodo
- Department of Microbiology, Federal Teaching Hospital, Lokoja, Kogi State, Nigeria
| | - Ayomide Oluwatobiloba Okuneye
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Precious Oluwatosin Adamson
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Mofeoluwa Favour Kolawole
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
3
|
Raro OHF, Nordmann P, Poirel L. Complete genome sequence of the OXA-48-producing Klebsiella pneumoniae strain 11978. Microbiol Resour Announc 2024; 13:e0034124. [PMID: 39162464 PMCID: PMC11390037 DOI: 10.1128/mra.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
We announce the complete genome sequence of Klebsiella pneumoniae strain 11978 isolated from a patient hospitalized in Turkey in 2001. The genome belongs to sequence type 14 and includes three plasmids. Notably, it presents an IncL plasmid carrying blaOXA-48, which demonstrated global success in terms of dissemination.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Addis E, Unali I, Bertoncelli A, Ventura A, Cecchetto R, Mazzariol A. Different OXA-Carbapenemases in Genetically Unrelated Klebsiella pneumoniae Strains Isolated in a North Italian Hospital During Multidrug Resistance Screening. Microb Drug Resist 2024; 30:127-133. [PMID: 38165645 DOI: 10.1089/mdr.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Klebsiella pneumoniae is one of the main opportunistic pathogens that cause a broad spectrum of diseases with increasingly frequent acquisition of resistance to antibiotics, namely carbapenems. This study focused on the characterization of 23 OXA-48-like carbapenemase-producing K. pneumoniae isolates using phenotypic and molecular tests. Phenotypic determination of the presence of β-lactamases was performed using the extended-spectrum beta-lactamase (ESBL) NP test, and phenotypic determination of the presence of carbapenemase was based on the Carba NP test. Antimicrobial susceptibility tests were performed to assess the resistance against carbapenems. Molecular characterization of ESBL genes and carbapenemase genes (blaOXA-48, blaKPC, blaVIM, and blaNDM) was performed using polymerase chain reaction (PCR) techniques. In addition, K. pneumoniae strains were analyzed for their relatedness using multilocus sequence typing PCR analysis based on the Institut Pasteur protocol, which produces allelic profiles that contain their evolutionary and geographic pattern. Following further Sanger sequencing of the blaOXA-48 genes, no genetic mutations were found. Some OXA-48-producing K. pneumoniae isolates coharbored blaKPC, blaNDM, and blaVIM genes, which encode other carbapenemases that can hydrolyze carbapenem antibiotics. The final part of the study focused on the characterization of the plasmid profiles of all isolates to better understand the spreading of the IncL/M blaOXA-48 plasmid gene. The plasmid profile also revealed other incompatibility groups, suggesting that other plasmid genes are spreading in K. pneumoniae isolates, which can coharbor and spread different carbapenemases simultaneously.
Collapse
Affiliation(s)
- Elena Addis
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilaria Unali
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertoncelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Ventura
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Puljko A, Barišić I, Dekić Rozman S, Križanović S, Babić I, Jelić M, Maravić A, Udiković-Kolić N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. ENVIRONMENT INTERNATIONAL 2024; 185:108554. [PMID: 38479059 DOI: 10.1016/j.envint.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Svjetlana Dekić Rozman
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
6
|
Pospišil M, Car H, Elveđi-Gašparović V, Beader N, Herljević Z, Bedenić B. Bloodstream Infections by AmpC-Producing Enterobacterales: Risk Factors and Therapeutic Outcome. Pathogens 2023; 12:1125. [PMID: 37764933 PMCID: PMC10535069 DOI: 10.3390/pathogens12091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Bloodstream infections associated with AmpC-producing Enterobacterales are severe medical conditions which, without prompt and effective treatment, may have dire ramifications. This study aimed to assess whether certain comorbidities and previous surgical procedures coincide with resistance determinants of AmpC-producing Enterobacterales associated with bloodstream infections. Antibiotic resistance patterns and therapy outcome were also determined. The patients' data obtained revealed that the prevalence of recent surgical procedures, solid organ tumors, metabolic diseases, kidney and liver failure, and hematological malignancies do not differ between resistant and susceptible isolates of AmpC-producing Enterobacterales. Furthermore, no difference was reported in mortality rates. Regarding antibiotic resistance, 34.52% of isolates were confirmed to be resistant (AmpC hyperproduction, ESBL, or carbapenemase). More than one in five AmpC hyperproducers were reported amid Providencia spp., K. aerogenes, E. cloacae, and C. freundii. strains. Carbapenemases were mostly noted in Providencia spp. followed by M. morganii and K. aerogenes strains. Serratia marcescens had the highest proportion of ESBLsof ESBLs. Resistance to expanded-spectrum cephalosporins of Providencia spp. and K. aerogenes strains exceeded 50%, and resistance to meropenem over 10% was observed only in C. freundii strains. Enterobacterales' ever-growing resistance to antibiotics is becoming quite a challenge for clinicians and new treatment options are required.
Collapse
Affiliation(s)
- Mladen Pospišil
- Krapina-Zagorje County Community Health Centre, 49245 Stubica, Croatia;
| | - Haris Car
- Zagreb Health School, 10000 Zagreb, Croatia;
| | - Vesna Elveđi-Gašparović
- Department of Gynecology and Obstetrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Gynecology and Obstetrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nataša Beader
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Clinical Department for Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Zoran Herljević
- Clinical Department for Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Branka Bedenić
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Clinical Department for Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
7
|
Meštrović T, Ikuta KS, Swetschinski L, Gray A, Robles Aguilar G, Han C, Wool E, Gershberg Hayoon A, Murray CJ, Naghavi M. The burden of bacterial antimicrobial resistance in Croatia in 2019: a country-level systematic analysis. Croat Med J 2023; 64:272-283. [PMID: 37654039 PMCID: PMC10509683 DOI: 10.3325/cmj.2023.64.272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/27/2023] [Indexed: 01/04/2025] Open
Abstract
AIM To deliver the most wide-ranging set of antimicrobial resistance (AMR) burden estimates for Croatia to date. METHODS A complex modeling approach with five broad modeling components was used to estimate the disease burden for 12 main infectious syndromes and one residual group, 23 pathogenic bacteria, and 88 bug-drug combinations. This was represented by two relevant counterfactual scenarios: deaths/disability-adjusted life years (DALYs) that are attributable to AMR considering a situation where drug-resistant infections are substituted with sensitive ones, and deaths/DALYs associated with AMR considering a scenario where people with drug-resistant infections would instead present without any infection. The 95% uncertainty intervals (UI) were based on 1000 posterior draws in each modeling step, reported at the 2.5% and 97.5% of the draws' distribution, while out-of-sample predictive validation was pursued for all the models. RESULTS The total burden associated with AMR in Croatia was 2546 (95% UI 1558-3803) deaths and 46958 (28,033-71,628) DALYs, while the attributable burden was 614 (365-943) deaths and 11321 (6,544-17,809) DALYs. The highest number of deaths was established for bloodstream infections, followed by peritoneal and intra-abdominal infections and infections of the urinary tract. Five leading pathogenic bacterial agents were responsible for 1808 deaths associated with resistance: Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa (ordered by the number of deaths). Trimethoprim/sulfamethoxazole-resistant E coli and methicillin-resistant S. aureus were dominant pathogen-drug combinations in regard to mortality associated with and attributable to AMR, respectively. CONCLUSION We showed that AMR represented a substantial public health concern in Croatia, which reflects global trends; hence, our detailed country-level findings may fast-track the implementation of multipronged strategies tailored in accordance with leading pathogens and pathogen-drug combinations.
Collapse
Affiliation(s)
- Tomislav Meštrović
- Tomislav Meštrović, Department of Nursing, University Centre Varaždin, University North, Ul. 104. brigade 3, 42 000 Varaždin, Croatia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma Y, Guo P, Chen X, Xu M, Liu W, Jin X. Anti-Klebsiella pneumoniae activity of secondary metabolism of Achromobacter from the intestine of Periplaneta americana. BMC Microbiol 2023; 23:162. [PMID: 37277707 DOI: 10.1186/s12866-023-02909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the main pathogens of clinical isolation and nosocomial infections, as K. pneumoniae show broad-spectrum resistance to β-lactam and carbapenem antibiotics. It is emerging clinical need for a safe and effective drug to anti-K. pneumoniae. At present, Achromobacter mainly focused on its degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, assisting insects to decompose, degrade heavy metals and utilize organic matter, but there were few reports on the antibacterial activity of the secondary metabolites of Achromobacter. RESULTS In this study, a strain WA5-4-31 from the intestinal tract of Periplaneta americana exhibited strong activity against K. Pneumoniae through preliminary screening. The strain was determined to be Achromobacter sp. through the morphological characteristics, genotyping and phylogenetic tree analysis, which is homologous to Achromobacter ruhlandii by 99%, its accession numbe in GenBank at National Center for Biotechnology Information (NCBI) is MN007235, and its deposit number was GDMCC NO.1.2520. Six compounds (Actinomycin D, Actinomycin X2, Collismycin A, Citrinin, Neoechinulin A and Cytochalasin E) were isolated and determined by activity tracking, chemical separation, nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Among them, Actinomycin D, Actinomycin X2, Collismycin A, Citrinin and Cytochalasin E showed a good effect on anti-K. pneumoniae, with MIC values of 16-64 µg/mL. CONCLUSIONS The study reported Achromobacter, which was from the intestinal tract of Periplaneta americana with the activity against K. Pneumoniae, can produce antibacterial compounds for the first time. It lays the foundation for development of secondary metabolites of insect intestinal microorganisms.
Collapse
Affiliation(s)
- Yan Ma
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical Laboratory, Shenzhen Bao'An District Central Hospital, Shenzhen, 518103, China
| | - Xueqin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minhua Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical laboratory, Foshan Fosun Chancheng Hospital, Foshan, 528000, China
| | - Wenbin Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaobao Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Bedenić B, Luxner J, Car H, Sardelić S, Bogdan M, Varda-Brkić D, Šuto S, Grisold A, Beader N, Zarfel G. Emergence and Spread of Enterobacterales with Multiple Carbapenemases after COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050677. [PMID: 37242347 DOI: 10.3390/pathogens12050677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Resistance to carbapenems in Enterobacterales has become a matter of the highest concern in the last decade. Recently, Enterobacterales harboring multiple carbapenemases were detected in three hospital centers in Croatia and in the outpatient setting, posing a serious therapeutic challenge for clinicians. In this study, we analyzed eight Klebsiella pneumoniae and two Enterobacter cloacae complex isolates with multiple carbapenemases, with regard to antibiotic susceptibility, β-lactamase production and plasmid content. The isolates demonstrated uniform resistance to amoxicillin/clavulanate, piperacillin/tazobactam, cefuroxime, ceftazidime, cefotaxime, ceftriaxone and ertapenem. Among novel β-lactam/inhibitor combinations, ceftazidime/avibactam exhibited moderate activity, with 50% of isolates susceptible. All isolates demonstrated resistance to imipenem/cilastatin/relebactam, and all but one to ceftolozane/tazobactam. Four isolates exhibited a multidrug-resistant phenotype (MDR), whereas six were allocated to an extensively drug-resistant phenotype (XDR). OKNV detected three combinations of carbapenemases: OXA-48+NDM (five isolates), OXA-48+VIM (three isolates) and OXA-48+KPC (two isolates). Inter-array testing identified a wide variety of resistance genes for β-lactam antibiotics: blaCTX-M-15, blaTEM, blaSHV, blaOXA-1, blaOXA-2, blaOXA-9, aminoglycosides: aac6, aad, rmt, arm and aph, fluoroquinolones: qnrA, qnrB and qnrS, sulphonamides: sul1 and sul2 and trimethoprim: dfrA5, dfrA7, dfrA14, dfrA17 and dfrA19. mcr genes were reported for the first time in Croatia. This study demonstrated the ability of K. pneumoniae and E. cloacae to acquire various resistance determinants under the selection pressure of antibiotics widely used during the COVID-19 pandemic. The novel inter-array method showed good correlation with OKNV and PCR, although some discrepancies were found.
Collapse
Affiliation(s)
- Branka Bedenić
- Department of Microbiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Clinical Department for Clinical and Molecular Microbiology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Josefa Luxner
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| | - Haris Car
- Zagreb Health School, 10000 Zagreb, Croatia
| | - Sanda Sardelić
- Department of Microbiology, University Hospital Centre Split, 21000 Split, Croatia
| | - Maja Bogdan
- Department of Microbiology, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Dijana Varda-Brkić
- Clinical Department for Clinical and Molecular Microbiology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Sandra Šuto
- Department of Microbiology, Andrija Štampar Public Health Institute, 10000 Zagreb, Croatia
| | - Andrea Grisold
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| | - Nataša Beader
- Department of Microbiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Clinical Department for Clinical and Molecular Microbiology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Gernot Zarfel
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Shahid H, Arooj I, Zafar S, Saba. Honey-mediated synthesis of Cr2O3 nanoparticles and their potent anti-bacterial, anti-oxidant and anti-inflammatory activities. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
11
|
Exploring the Antibiotic Resistance Profile of Clinical Klebsiella pneumoniae Isolates in Portugal. Antibiotics (Basel) 2022; 11:antibiotics11111613. [PMID: 36421258 PMCID: PMC9686965 DOI: 10.3390/antibiotics11111613] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
While antibiotic resistance is rising to dangerously high levels, resistance mechanisms are spreading globally among diverse bacterial species. The emergence of antibiotic-resistant Klebsiella pneumoniae, mainly due to the production of antibiotic-inactivating enzymes, is currently responsible for most treatment failures, threatening the effectiveness of classes of antibiotics used for decades. This study assessed the presence of genetic determinants of β-lactam resistance in 102 multi-drug resistant (MDR) K. pneumoniae isolates from patients admitted to two central hospitals in northern Portugal from 2010 to 2020. Antimicrobial susceptibility testing revealed a high rate (>90%) of resistance to most β-lactam antibiotics, except for carbapenems and cephamycins, which showed antimicrobial susceptibility rates in the range of 23.5−34.3% and 40.2−68.6%, respectively. A diverse pool of β-lactam resistance genetic determinants, including carbapenemases- (i.e., blaKPC-like and blaOXA-48-like), extended-spectrum β-lactamases (ESBL; i.e., blaTEM-like, blaCTX-M-like and blaSHV-like), and AmpC β-lactamases-coding genes (i.e., blaCMY-2-like and blaDHA-like) were found in most K. pneumoniae isolates. blaKPC-like (72.5%) and ESBL genes (37.3−74.5%) were the most detected, with approximately 80% of K. pneumoniae isolates presenting two or more resistance genes. As the optimal treatment of β-lactamase-producing K. pneumoniae infections remains problematic, the high co-occurrence of multiple β-lactam resistance genes must be seen as a serious warning of the problem of antimicrobial resistance.
Collapse
|
12
|
Ramazani R, Izadi Amoli R, Taghizadeh Armaki M, Pournajaf A, Kaboosi H, Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran, Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran, Infectious Disease and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran, Infectious Disease and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran, Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. A molecular New Update on the Biofilm Production and Carbapenem Resistance Mechanisms in Clinical Pseudomonas aeruginosa Isolates. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|