1
|
Srivastava K, Singh V, Raikwar VK, Anupurba S. Diagnostic accuracy of direct drug susceptibility testing of second-line antitubercular drugs. Microbiol Spectr 2025; 13:e0250624. [PMID: 40130868 PMCID: PMC12053899 DOI: 10.1128/spectrum.02506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
It is well-established that direct drug susceptibility testing (DST) of Mycobacterium tuberculosis using a liquid medium for first-line drugs provides accurate and time-saving results. The purpose of this study was to determine whether DST for second-line drugs could be successfully performed using processed smear-positive specimens (direct DST) and whether this method is accurate and may result in a significant reduction in time. The accuracy and shorter turnaround time of this approach were established by comparing the results acquired through direct DST with those obtained through indirect DST. Of the 150 acid-fast bacteria smear-positive sputum specimens that were set up for direct DST, 130 (86.67%) produced results that could be reported. Direct DST reporting took an average of 10 days (range: 9-11 days). The time savings from direct DST to indirect DST, which took into account the time needed to isolate a culture and conduct DST, was 7 days on average (range: 6-9 days). When the direct and indirect DST results were compared, the concordance with levofloxacin (LFX), moxifloxacin (MOX), linezolid (LNZ), and clofazimine (CFZ) were 96.33%, 96.16%, 100%, and 99.24%, respectively. The sensitivity and specificity of the test result were 93.75%, 83.33%, 100%, and 100%, and 98.0, 99.10, 100, and 99.19% with an accuracy of 98%, 98%, 100%, and 99% for LFX, MOX, LNZ, and CFZ, respectively. Direct DST is a fast and accurate diagnostic technique for detecting second-line drug resistance in tuberculosis. IMPORTANCE The significance of this work is that it assesses whether direct drug susceptibility could be used in routine testing to save significant time, which is critical for early diagnosis of resistance and successful treatment.
Collapse
Affiliation(s)
- Kartiki Srivastava
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Varsha Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinod Kumar Raikwar
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shampa Anupurba
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Vidyasagar, Patel RR, Singh SK, Dehari D, Nath G, Singh M. Facile green synthesis of silver nanoparticles derived from the medicinal plant Clerodendrum serratum and its biological activity against Mycobacterium species. Heliyon 2024; 10:e31116. [PMID: 38799742 PMCID: PMC11126841 DOI: 10.1016/j.heliyon.2024.e31116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of multidrug-resistant mycobacterial strains is a significant crisis that has led to higher treatment failure rates and more toxic and expensive medications for tuberculosis (TB). The urgent need to develop novel therapeutics has galvanized research interest towards developing alternative antimicrobials such as silver nanoparticles (AgNPs). The current study focused on the anti-mycobacterial activity of green-synthesized AgNPs and its polyethylene glycol encapsulated derivative (PEG-AgNPs) with improved stability using the leaves extract of Clerodendrum serratum. Different characterization methods were used to analyze them. DLS analysis revealed a lower polydispersity index of PEG-AgNPs, suggesting a more uniform size distribution than that of AgNPs. The HR-TEM results revealed that the AgNPs and PEG-AgNPs have predominantly spherical shapes in the size range of 9-35 nm and 15-60 nm, respectively, while positive values of Zeta potential indicate their stability. FTIR-ATR analysis confirmed the presence of functional groups responsible for reducing and capping the bio-reduced AgNPs, whereas the XRD data established its crystalline nature. Impressively, the PEG-AgNPs exhibited maximum inhibitory activity against different Tubercular and Non-Tuberculous Mycobacterium species i.e., Mycobacterium smegmatis, Mycobacterium fortuitum and Mycobacterium marinum, relative to those of AgNPs and Linezolid. The flow cytometry assay showed that the anti-mycobacterial action was mediated by an increase in cell wall permeability. Notably, the results of AFM confirm their ability to inhibit mycobacterial biofilm significantly. We demonstrated the nontoxic nature of these AgNPs, explicated by the absence of hemolytic activity against human RBCs. Overall, the results suggest that PEG-AgNPs could offer a novel therapeutic approach with potential anti-mycobacterial activity and can overcome the limitations of existing TB therapies.
Collapse
Affiliation(s)
- Vidyasagar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
4
|
Islam MM, Alam MS, Liu Z, Khatun MS, Yusuf B, Hameed HMA, Tian X, Chhotaray C, Basnet R, Abraha H, Zhang X, Khan SA, Fang C, Li C, Hasan S, Tan S, Zhong N, Hu J, Zhang T. Molecular mechanisms of resistance and treatment efficacy of clofazimine and bedaquiline against Mycobacterium tuberculosis. Front Med (Lausanne) 2024; 10:1304857. [PMID: 38274444 PMCID: PMC10809401 DOI: 10.3389/fmed.2023.1304857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024] Open
Abstract
Clofazimine (CFZ) and bedaquiline (BDQ) are currently used for the treatment of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains. In recent years, adding CFZ and BDQ to tuberculosis (TB) drug regimens against MDR Mtb strains has significantly improved treatment results, but these improvements are threatened by the emergence of MDR and extensively drug-resistant (XDR) Mtb strains. Recently, CFZ and BDQ have attracted much attention for their strong clinical efficacy, although very little is known about the mechanisms of action, drug susceptibility test (DST), resistance mechanisms, cross-resistance, and pharmacokinetics of these two drugs. In this current review, we provide recent updates on the mechanisms of action, DST, associated mutations with individual resistance and cross-resistance, clinical efficacy, and pharmacokinetics of CFZ and BDQ against Mtb strains. Presently, known mechanisms of resistance for CFZ and/or BDQ include mutations within the Rv0678, pepQ, Rv1979c, and atpE genes. The cross-resistance between CFZ and BDQ may reduce available MDR-/XDR-TB treatment options. The use of CFZ and BDQ for treatment in the setting of limited DST could allow further spread of drug resistance. The DST and resistance knowledge are urgently needed where CFZ and BDQ resistance do emerge. Therefore, an in-depth understanding of clinical efficacy, DST, cross-resistance, and pharmacokinetics for CFZ and BDQ against Mtb can provide new ideas for improving treatment outcomes, reducing mortality, preventing drug resistance, and TB transmission. Along with this, it will also help to develop rapid molecular diagnostic tools as well as novel therapeutic drugs for TB.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Mst Sumaia Khatun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chiranjibi Chhotaray
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haftay Abraha
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Pathology, Department of Pathobiology, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sohel Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shouyong Tan
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxing Hu
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|