1
|
Selim S, Almuhayawi MS, Saddiq AA, Alruhaili MH, Saied E, Sharaf MH, Tarabulsi MK, Al Jaouni SK. Synthesis of novel MgO-ZnO nanocomposite using Pluchea indica leaf extract and study of their biological activities. BIORESOUR BIOPROCESS 2025; 12:33. [PMID: 40220116 PMCID: PMC11993530 DOI: 10.1186/s40643-025-00848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/08/2025] [Indexed: 04/14/2025] Open
Abstract
The biosynthesis of bimetallic nanoparticles using plant extracts has garnered significant attention due to their eco-friendly and cost-effective nature. This study aimed to biosynthesize magnesium oxide-zinc oxide nanocomposite (MgO-ZnO nanocomposite) using Pluchea indica leaf extract for the first time, with a focus on characterizing its physicochemical properties and evaluating its biological activities. The biosynthesized MgO-ZnO nanocomposite was fully characterized, revealing an absorbance peak at 300 nm using UV-vis spectroscopy. Transmission electron microscopy (TEM) confirmed particle stability within the size range of 5-35 nm. Cytotoxicity analysis on the Wi 38 normal cell line demonstrated an IC50 value of 179.13 µg/mL, indicating good biosafety. The nanocomposite exhibited potent anticancer activity, with IC50 values of 73.61 µg/mL and 31.25 µg/mL against Hep-G2 and MCF-7 cancer cell lines, respectively. Antibacterial assays revealed activity against Klebsiella pneumoniae, Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Candida albicans, with minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 µg/mL. Furthermore, the nanocomposite displayed antioxidant activity with an IC50 value of 175 µg/mL, as determined by the DPPH assay. In conclusion, the successful synthesis of the MgO-ZnO nanocomposite using P. indica leaf extract demonstrates its potential as a safe and effective agent for concentration-dependent antioxidants, antibacterial, and anticancer applications. This study highlights the versatility of plant-mediated biosynthesis in developing functional nanomaterials for biomedical use.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Amna A Saddiq
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 11884, Cairo, Egypt.
| | - Mohamed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Faculty of Medicine, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Hashem AH, Abdel-Maksoud MA, Fatima S, Almutairi SM, Ghorab MA, El-Batal AI, El-Sayyad GS. Synthesis and characterization of innovative GA@Ag-CuO nanocomposite with potent antimicrobial and anticancer properties. Sci Rep 2025; 15:689. [PMID: 39753578 PMCID: PMC11699129 DOI: 10.1038/s41598-024-76446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis. spectrophotometer reveals that, the observed peak in the spectrum was formed by the observed O.D. at 0.755, and confirmed that the produced GA@Ag-CuO nanocomposite was small and discernible at 360 nm. The particles' diameters varied from 9.5 nm to 49.5 nm, with a mean diameter of 25.53 ± 1.4 nm. The created Gum Arabic filtrate was rich in active functional groups, and the provided polydisperse NPs were intended to reduce, stabilize, and the produced filtrate act as capping agents. Based on the XRD data, the synthesized GA@Ag-CuO nanocomposite was crystallized and had a face-centered (fcc) crystal structure. Biosafety of GA@Ag-CuO nanocomposite was assessed toward Wi 38 normal cell line, where it showed safety toward the tested cell line where IC50 was 154.2 µg/mL. Antimicrobial results confirmed that, GA@Ag-CuO nanocomposite has antibacterial activity with MICs 15.6, 125, 31.25 and 125 µg/mL against S. epidermis, S. aureus, L. plantrum, and S. typhimurium, respectively. Likewise, it showed antifungal activity toward C. albicans and C. neoformans with MICs 62.5 and 15.62 µg/ml, respectively. Moreover, GA@Ag-CuO nanocomposite displayed promising anticancer activity with IC50 26.11 and 59.5 µg/ml toward MCF-7 and Hep-G2, respectively. In conclusion, the novel GA@Ag-CuO nanocomposite demonstrated promising antibacterial, antifungal, and anticancer activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Saeedah M Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Dept. of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
- School of Veterinary Medicine, Department of Molecular Biosciences, University of California, Davis, CA, 95616-8741, USA
| | - Ahmed I El-Batal
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galal City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
3
|
Sathishkumar P, Khan F. Leveraging bacteria-inspired nanomaterials for targeted controlling biofilm and virulence properties of Pseudomonas aeruginosa. Microb Pathog 2024; 197:107103. [PMID: 39505089 DOI: 10.1016/j.micpath.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen designated as a high-priority pathogen because of its role in major healthcare-associated and nosocomial infections. Biofilm production by these bacteria is one of the adaptive resistance mechanisms to traditional antibiotics, making treatment challenging, especially for immunocompromised patients. P. aeruginosa also produces a variety of virulence factors, which aid in invasion, adhesion, persistence, and immune system protection. Recent advances in nanotechnology-based therapy, notably the application of bioinspired metal and metal-oxide nanomaterials, have been seen as a viable way to control P. aeruginosa biofilm and virulence. Because of its ease of growth and culture, synthesizing metal and metal-oxide nanomaterials using bacterial species has become one of the most environmentally benign green synthesis options. The application of bacterial-inspired nanomaterials is particularly successful for targeted control of P. aeruginosa infection due to interactions with cell membrane components and transport systems. This paper delves into and provides a complete overview of the application of bacterial-inspired metal and metal-oxide nanomaterials to treat P. aeruginosa infection by targeting biofilm and virulence characteristics. The review focused on synthesizing and applying gold, silver, copper, iron, magnetite, and zinc oxide nanomaterials to mitigate P. aeruginosa biofilm and virulence. The underlying mechanism of these metal and metal-oxide nanoparticles in relation to biofilm and virulence features has also been thoroughly discussed. The current review introduces novel approaches to treating and controlling drug-resistant P. aeruginosa using bacterial-inspired nanomaterials as a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
El-Sayyad GS, El-Khawaga AM, Rashdan HRM. Gamma-irradiated copper-based metal organic framework nanocomposites for photocatalytic degradation of water pollutants and disinfection of some pathogenic bacteria and fungi. BMC Microbiol 2024; 24:453. [PMID: 39506685 PMCID: PMC11539452 DOI: 10.1186/s12866-024-03587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Although there are many uses for metal-organic framework (MOF) based nanocomposites, research shows that these materials have received a lot of interest in the field of water treatment, namely in the photodegradation of water contaminants, and disinfection of some pathogenic bacteria and fungi. This is brought on by excessive water pollution, a lack of available water, low-quality drinking water, and the emergence of persistent micro-pollutants in water bodies. Photocatalytic methods may be used to remove most water contaminants, and pathogenic microbes, and MOF is an excellent modifying and supporting material for photocatalytic degradation. METHODS This work involved the fabrication of a unique Cu-MOF based nanocomposite that was exposed to gamma radiation. The nanocomposite was subsequently employed for photocatalytic degradation and as an antimicrobial agent against certain harmful bacteria and fungi. The produced Cu-MOf nanocomposite was identified by XRD, SEM, and EDX. Growth curve analysis, UV lighting impact, and antibiofilm potential have been carried out to check antimicrobial potential. Additionally, the membrane leakage test was used to determine the mechanism of the antimicrobial action. In an experimental investigation of photocatalytic activity, a 50 mL aqueous solution including 10.0 ppm of Rhodamine B (RB) was used to solubilize 10 mg of Cu-MOF. It has been investigated how pH and starting concentration affect RB elimination by Cu-MOF. Ultimately, RB elimination mechanism and kinetic investigations have been carried out. RESULTS SEM images from the characterization techniques demonstrated the fact that the Cu-MOF was synthesized effectively and exhibited the Cu-MOF layers' flake-like form. Uneven clusters of rods make up each stratum. The primary peaks in the Cu-MOF's diffraction pattern were found at 2θ values of 8.75◦, 14.83◦, 17.75◦, 21.04◦, 22.17◦, 23.31◦, 25.41◦, and 26.38◦, according to the XRD data. After 135 min of UV irradiation, only 8% of RB had undergone photolytic destruction. On the other hand, the elimination resulting from adsorption during a 30-min period without light was around 16%. Conversely, after 135 min, Cu-MOF's photocatalytic breakdown of RB with UV light reached 81.3%. At pH 9.0, the greatest removal of RB at equilibrium was found, and when the amount of photocatalyst rose from 5 to 20 mg, the removal efficiency improved as well. The most sensitive organism to the synthesized Cu-MOF, according to antimicrobial data, was Candida albicans, with a documented MIC value of 62.5 µg mL-1 and antibacterial ZOI as 32.5 mm after 1000 ppm treatment. Cu-MOF also showed the same MIC (62.5 µg mL-1) values against Staphylococcus aureus and Escherichia coli, and 35.0 and 32.0 mm ZOI after 1000 ppm treatment, respectively. Ultimately, it was found that Cu-MOF (1000 µg/mL) after having undergone gamma irradiation (100.0 kGy) was more effective against S. aureus (42.5 mm ZOI) and E. coli (38.0 mm ZOI). CONCLUSION From the obtained results, the synthesized MOF nanocomposites had promising catalytic degradation of RB dye and high antimicrobial potential which encouraging their use in wastewater treatment against some pathogenic microbes and polluted dyes. Due to the exceptional physicochemical characteristics of MOF nanocomposites, it is possible to create and modify photocatalytic nanocomposites in a way that improves their recovery, efficiency, and recyclability.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City 43511, Suez, Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
5
|
Padmavathi AR, Reddy GKK, Murthy PS, Nancharaiah YV. New arsenals for old armour: Biogenic nanoparticles in the battle against drug-resistant Candidaalbicans. Microb Pathog 2024; 194:106800. [PMID: 39025380 DOI: 10.1016/j.micpath.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Candida albicans is a common commensal fungus and fourth most frequent causative agent of nosocomial infections including life-threatening invasive candidiasis in humans. The effectiveness of present antifungal therapies using azoles, polyenes, flucytosine and echinocandins has plateaued in managing fungal infections. The limitations of these antifungal drugs are related to polymorphic morphology, biofilm formation, emergence of drug-resistant strains and production of several virulence factors. Development of new antifungal agents, which can particularly afflict multiple cellular targets and limiting evolving resistant strains are needed. Recently, metal nanoparticles have emerged as a source of new antifungal agents for antifungal formulations. Furthermore, green nanotechnology deals with the use of biosynthetic routes that offer new avenue for synthesizing antifungal nanoparticles coupled with less toxic chemical inventory and environmental sustainability. This article reviews the recent developments on C. albicans pathogenesis, biofilm formation, drug resistance, mode of action of antifungal drugs and antifungal activities of metal nanoparticles. The antifungal efficacy and mode of action of metal nanoparticles are described in the context of prospective therapeutic applications.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
6
|
Li H, Yang Z, Khan SA, Walsh LJ, Seneviratne CJ, Ziora ZM. Characteristics of Metallic Nanoparticles (Especially Silver Nanoparticles) as Anti-Biofilm Agents. Antibiotics (Basel) 2024; 13:819. [PMID: 39334993 PMCID: PMC11428507 DOI: 10.3390/antibiotics13090819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Biofilm-associated infections account for a large proportion of chronic diseases and pose a major health challenge. Metal nanoparticles offer a new way to address this problem, by impairing microbial growth and biofilm formation and by causing degradation of existing biofilms. This review of metal nanoparticles with antimicrobial actions included an analysis of 20 years of journal papers and patent applications, highlighting the progress over that time. A network analysis of relevant publications showed a major focus on the eradication of single-species biofilms formed under laboratory conditions, while a bibliometric analysis showed growing interest in combining different types of metal nanoparticles with one another or with antibiotics. The analysis of patent applications showed considerable growth over time, but with relatively few patents progressing to be granted. Overall, this profile shows that intense interest in metal nanoparticles as anti-biofilm agents is progressing beyond the confines of simple laboratory biofilm models and coming closer to clinical application. Looking to the future, metal nanoparticles may provide a sustainable approach to combatting biofilms of drug-resistant bacteria.
Collapse
Affiliation(s)
- Hongze Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (H.L.); (Z.Y.)
| | - Zhihe Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (H.L.); (Z.Y.)
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
| | - Sadaf Aiman Khan
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Indian Institute of Technology (IITD) Delhi, New Delhi 110016, India
| | - Laurence J. Walsh
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
| | - Chaminda Jayampath Seneviratne
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Indian Institute of Technology (IITD) Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
Abdul Hak A, Zedan HH, El-Mahallawy HA, El-Sayyad GS, Zafer MM. In Vivo and in Vitro activity of colistin-conjugated bimetallic silver-copper oxide nanoparticles against Pandrug-resistant Pseudomonas aeruginosa. BMC Microbiol 2024; 24:213. [PMID: 38886632 PMCID: PMC11181629 DOI: 10.1186/s12866-024-03358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Addressing microbial resistance urgently calls for alternative treatment options. This study investigates the impact of a bimetallic formulation containing colistin, silver, and copper oxide on a pandrug-resistant, highly virulent Pseudomonas aeruginosa (P. aeruginosa) isolate from a cancer patient at the National Cancer Institute, Cairo University, Egypt. METHODS Silver nanoparticles (Ag NPs), copper oxide nanoparticles (CuO NPs), and bimetallic silver-copper oxide nanoparticles (Ag-CuO NPs) were synthesized using gamma rays, combined with colistin (Col), and characterized by various analytical methods. The antimicrobial activity of Col-Ag NPs, Col-CuO NPs, and bimetallic Col-Ag-CuO NPs against P. aeruginosa was evaluated using the agar well diffusion method, and their minimum inhibitory concentration (MIC) was determined using broth microdilution. Virulence factors such as pyocyanin production, swarming motility, and biofilm formation were assessed before and after treatment with bimetallic Col-Ag-CuO NPs. The in vivo efficacy was evaluated using the Galleria mellonella model, and antibacterial mechanism were examined through membrane leakage assay. RESULTS The optimal synthesis of Ag NPs occurred at a gamma ray dose of 15.0 kGy, with the highest optical density (OD) of 2.4 at 375 nm. Similarly, CuO NPs had an optimal dose of 15.0 kGy, with an OD of 1.5 at 330 nm. Bimetallic Ag-CuO NPs were most potent at 15.0 kGy, yielding an OD of 1.9 at 425 nm. The MIC of colistin was significantly reduced when combined with nanoparticles: 8 µg/mL for colistin alone, 0.046 µg/mL for Col-Ag NPs, and 0.0117 µg/mL for Col-Ag-CuO NPs. Bimetallic Col-Ag-CuO NPs reduced the MIC four-fold compared to Col-Ag NPs. Increasing the sub-inhibitory concentration of bimetallic nanoparticles from 0.29 × 10-2 to 0.58 × 10-2 µg/mL reduced P. aeruginosa swarming by 32-64% and twitching motility by 34-97%. At these concentrations, pyocyanin production decreased by 39-58%, and biofilm formation was inhibited by 33-48%. The nanoparticles were non-toxic to Galleria mellonella, showing 100% survival by day 3, similar to the saline-treated group. CONCLUSIONS The synthesis of bimetallic Ag-CuO NPs conjugated with colistin presents a promising alternative treatment for combating the challenging P. aeruginosa pathogen in hospital settings. Further research is needed to explore and elucidate the mechanisms underlying the inhibitory effects of colistin-bimetallic Ag-CuO NPs on microbial persistence and dissemination.
Collapse
Affiliation(s)
- Asmaa Abdul Hak
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hamdallah H Zedan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hadir A El-Mahallawy
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| |
Collapse
|
8
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
9
|
Elkady FM, Hashem AH, Salem SS, El-Sayyad GS, Tawab AA, Alkherkhisy MM, Abdulrahman MS. Unveiling biological activities of biosynthesized starch/silver-selenium nanocomposite using Cladosporium cladosporioides CBS 174.62. BMC Microbiol 2024; 24:78. [PMID: 38459502 PMCID: PMC10921769 DOI: 10.1186/s12866-024-03228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Microbial cells capability to tolerate the effect of various antimicrobial classes represent a major worldwide health concern. The flexible and multi-components nanocomposites have enhanced physicochemical characters with several improved properties. Thus, different biological activities of biosynthesized starch/silver-selenium nanocomposite (St/Ag-Se NC) were assessed. METHODOLOGY The St/Ag-Se NC was biosynthesized using Cladosporium cladosporioides CBS 174.62 (C. cladosporioides) strain. The shape and average particle size were investigated using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), respectively. On the other hand, the St/Ag-Se NC effect on two cancer cell lines and red blood cells (RBCs) was evaluated and its hydrogen peroxide (H2O2) scavenging effect was assessed. Moreover, its effects on various microbial species in both planktonic and biofilm growth forms were examined. RESULTS The St/Ag-Se NC was successfully biosynthesized with oval and spherical shape and a mean particle diameter of 67.87 nm as confirmed by the HR-TEM analysis. St/Ag-Se NC showed promising anticancer activity toward human colorectal carcinoma (HCT-116) and human breast cancer (MCF-7) cell lines where IC50 were 21.37 and 19.98 µg/ml, respectively. Similarly, little effect on RBCs was observed with low nanocomposite concentration. As well, the highest nanocomposite H2O2 scavenging activity (42.84%) was recorded at a concentration of 2 mg/ml. Additionally, Staphylococcus epidermidis (S. epidermidis) ATCC 12,228 and Candida albicans (C. albicans) ATCC 10,231 were the highly affected bacterial and fungal strains with minimum inhibitory concentrations (MICs) of 18.75 and 50 µg/ml, respectively. Moreover, the noticeable effect of St/Ag-Se NC on microbial biofilm was concentration dependent. A high biofilm suppression percentage, 87.5% and 68.05%, were recorded with S. epidermidis and Staphylococcus aureus (S. aureus) when exposed to 1 mg/ml and 0.5 mg/ml, respectively. CONCLUSION The biosynthesized St/Ag-Se NC showed excellent antioxidant activity, haemocompatibility, and anti-proliferative effect at low concentrations. Also, it exhibited promising antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian (ACU), Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed Abdel Tawab
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammad M Alkherkhisy
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
10
|
El-Batal AI, Eisa MI, Saad MAM, Fakhry HM, El-Neshwy WM, Abdel-Fatah SS, Mosallam FM, El-Sayyad GS. Gum Arabic assisted the biomass synthesis of bimetallic silver copper oxide nanoparticles using gamma-rays for improving bacterial and viral wound healing: Promising antimicrobial activity against foot and mouth disease. Int J Biol Macromol 2024; 262:130010. [PMID: 38336320 DOI: 10.1016/j.ijbiomac.2024.130010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
In this work, gamma irradiation was used to create bimetallic silver‑copper oxide nanoparticles (Ag-CuO NPs) in an ecologically acceptable way using gum Arabic (GA) polymer as a capping and reducing agent. Bimetallic Ag-CuO NPs were investigated through UV-Vis. spectroscopy, HR-TEM, SEM, DLS, and XRD examinations. The potency of antimicrobial and antibiofilm activities against a few bacterial isolates and Candida sp. had been investigated. Clinical investigations of 30 cows and 20 buffaloes from different sites in Egypt's Sharkia governorate found ulcerative lesions on the mouth and interdigital region. The cytotoxic assay of the generated NPs on BHK-21 was examined. The bimetallic Ag-CuO NPs had an average diameter of 25.58 nm, and the HR-TEM results showed that they were spherical. According to our results, Ag-CuO NPs exhibited the highest antibacterial efficacy against S. aureus (26.5 mm ZOI), K. pneumoniae (26.0 mm ZOI), and C. albicans (28.5 mm ZOI). The growth of biofilms was also successfully inhibited through the application of Ag-CuO NPs by 88.12 % against S. aureus, 87.08 % against C. albicans, and 74.0 % against B. subtilis. The ulcers on the mouth and foot of diseased animals healed in 4-5 days and 1 week, respectively, following topical application of bimetallic Ag-CuO NPs. The results examined the potential protective effects of a dosage of 3.57 μg/mL on cells before viral infection (cell control). According to our research, bimetallic Ag-CuO NPs limit the development of the virus that causes foot-and-mouth disease (FMD). The reduction of a specific FMD virus's cytopathic impact (CPE) on cell development represented the inhibitory effect when compared to identical circumstances without pretreatment with bimetallic Ag-CuO NPs. Their remarkable antibacterial properties at low concentration and continued-phase stability suggest that they may find widespread use in a variety of pharmacological and biological applications, especially in the wound-healing process.
Collapse
Affiliation(s)
- Ahmed I El-Batal
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed I Eisa
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Hiam M Fakhry
- Foot and Mouth Disease Department, Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Wafaa M El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sobhy S Abdel-Fatah
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Farag M Mosallam
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
11
|
El-Sayyad GS, Abd Elkodous M, El-Bastawisy HS, El Rouby WMA. Potential antibacterial, antibiofilm, and photocatalytic performance of gamma-irradiated novel nanocomposite for enhanced disinfection applications with an investigated reaction mechanism. BMC Microbiol 2023; 23:270. [PMID: 37752448 PMCID: PMC10521429 DOI: 10.1186/s12866-023-03016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Water scarcity is now a global challenge due to the population growth and the limited amount of available potable water. In addition, modern industrialization, and microbial pathogenesis is resulting in water pollution on a large scale. METHODS In the present study, reusable Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was incorporated with CdS NPs to develop an efficient photocatalyst, and antimicrobial agents for wastewater treatment, and disinfection purpose. The antibacterial performance of the gamma-irradiated samples was evaluated against various types of Gram-positive bacteria using ZOI, MIC, antibiofilm, and effect of UV-exposure. Antibacterial reaction mechanism was assessed by bacterial membrane leakage assay, and SEM imaging. In addition, their photocatalytic efficiency was tested against MB cationic dye as a typical water organic pollutant. RESULTS Our results showed that, the formed CdS NPs were uniformly distributed onto the surface of the nanocomposite matrix. While, the resulted CdS-based nanocomposite possessed an average particle size of nearly 90.6 nm. The antibacterial performance of the prepared nanocomposite was significantly increased after activation with gamma and UV irradiations. The improved antibacterial performance was mainly due to the synergistic effect of both TiO2 and CdS NPs; whereas, the highest photocatalytic efficiency of MB removal was exhibited in alkaline media due to the electrostatic attraction between the cationic MB and the negatively-charged samples. In addition, the constructed heterojunction enabled better charge separation and increased the lifetime of the photogenerated charge carriers. CONCLUSION Our results can pave the way towards the development of efficient photocatalysts for wastewater treatment and promising antibacterial agents for disinfection applications.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - M Abd Elkodous
- Center for Nanotechnology (CNT), School of Engineering and Applied Science, Nile University, Sheikh Zayed, Giza, 16453, Egypt.
| | - Hanan S El-Bastawisy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Waleed M A El Rouby
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
12
|
El-Bastawisy HS, El-Sayyad GS, Abu Safe FA. Detection of hemolytic Shiga toxin-producing Escherichia coli in fresh vegetables and efficiency of phytogenically synthesized silver nanoparticles by Syzygium aromaticum extract and gamma radiation against isolated pathogens. BMC Microbiol 2023; 23:262. [PMID: 37723460 PMCID: PMC10508014 DOI: 10.1186/s12866-023-02994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) is a major cause of foodborne diseases accompanied by several clinical illnesses in humans. This research aimed to isolate, identify, and combat STEC using novel alternative treatments, researchers have lately investigated using plant extract to produce nanoparticles in an environmentally acceptable way. At various gamma-ray doses, gamma irradiation is used to optimize the conditions for the biogenically synthesized silver nanoparticles (Ag NPs) using an aqueous extract of clove as a reducing and stabilizing agent. METHODS On a specific medium, 120 vegetable samples were screened to isolate STEC and molecularly identified using real-time PCR. Moreover, the antibacterial and antibiofilm activities of biogenically synthesized Ag NPs against the isolated STEC were examined. RESULTS Twenty-five out of 120 samples of eight types of fresh vegetables tested positive for E. coli, as confirmed by 16S rRNA, of which three were positive for the presence of Stx-coding genes, and six were partially hemolytic. Seven antibiotic disks were used to determine antibiotic susceptibility; the results indicated that isolate STX2EC had the highest antibiotic resistance. The results demonstrated that Ag NPs were highly effective against the STEC isolates, particularly the isolate with the highest drug resistance, with inhibition zones recorded as 19 mm for STX2EC, 11 mm for STX1EC1, and 10 mm for STX1EC2 at a concentration of 108 µg/mL. MICs of the isolates STX1EC1, and STX1EC2 were 13.5 µg/mL whereas it was detected as 6.75 µg/mL for STX2EC. The percentages of biofilm inhibition for STX1EC2, STX1EC1, and STX2EC, were 78.7%, 76.9%, and 71.19%, respectively. CONCLUSION These findings suggest that the biogenic Ag NPs can be utilized as a new promising antibacterial agent to combat biofouling on surfaces.
Collapse
Affiliation(s)
- Hanan S El-Bastawisy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Feriala A Abu Safe
- Botany Department, Faculty of Women for Art, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Hashem AH, El-Sayyad GS, Al-Askar AA, Marey SA, AbdElgawad H, Abd-Elsalam KA, Saied E. Watermelon Rind Mediated Biosynthesis of Bimetallic Selenium-Silver Nanoparticles: Characterization, Antimicrobial and Anticancer Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3288. [PMID: 37765453 PMCID: PMC10535481 DOI: 10.3390/plants12183288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
One of the most hazardous diseases that influences human health globally is microbial infection. Therefore, bimetallic nanoparticles have received much attention for controlling microbial infections in the current decade. In the present study, bimetallic selenium-silver nanoparticles (Se-Ag NPs) were effectively biosynthesized using watermelon rind WR extract through the green technique for the first time. UV-visible spectroscopy, transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX) methods were used to characterize the produced NPs. The results indicated that the bimetallic Se-Ag NPs had synergistic antimicrobial activity at low concentrations, which helped to reduce the toxicity of Ag NPs after the bimetallic Se-Ag NPs preparation and increase their great potential. Se-Ag NPs with sizes ranging from 18.3 nm to 49.6 nm were detected by TEM. Se-Ag NP surfaces were uniformly visible in the SEM picture. The cytotoxicity of bimetallic Se-Ag NPs was assessed against the Wi38 normal cell line to check their safety, where the IC50 was 168.42 µg/mL. The results showed that bimetallic Se-Ag NPs had antibacterial action against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Bacillus subtilis, and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 12.5 to 50 µg/mL. Additionally, bimetallic Se-Ag NPs had promising anticancer activity toward the MCF7 cancerous cell line, where the IC50 was 21.6 µg/mL. In conclusion, bimetallic Se-Ag NPs were biosynthesized for the first time using WR extract, which had strong antibacterial, antifungal and anticancer properties.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Gharieb S. El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City 12451, Giza, Egypt;
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City 43511, Suez, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|