1
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
2
|
Tay KY, Wu KX, Chioh FWJ, Autio MI, Pek NMQ, Narmada BC, Tan SH, Low AFH, Lian MM, Chew EGY, Lau HH, Kao SL, Teo AKK, Foo JN, Foo RSY, Heng CK, Chan MYY, Cheung C. Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease. Atherosclerosis 2022; 362:11-22. [PMID: 36435092 DOI: 10.1016/j.atherosclerosis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.
Collapse
Affiliation(s)
- Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Florence Wen Jing Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Balakrishnan Chakrapani Narmada
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Experimental Drug Development Centre, A*STAR, 10 Biopolis Road, Singapore, 138670
| | - Sock-Hwee Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Adrian Fatt-Hoe Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Hwee Hui Lau
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Shih Ling Kao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, National University Hospital and National University Health System, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Roger Sik Yin Foo
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Chew Kiat Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yan Yee Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore.
| |
Collapse
|
3
|
Quinn MCJ, McCue K, Shi W, Johnatty SE, Beesley J, Civitarese A, O'Mara TA, Glubb DM, Tyrer JP, Armasu SM, Ong JS, Gharahkhani P, Lu Y, Gao B, Patch AM, Fasching PA, Beckmann MW, Lambrechts D, Vergote I, Velez Edwards DR, Beeghly-Fadiel A, Benitez J, Garcia MJ, Goodman MT, Dörk T, Dürst M, Modugno F, Moysich K, du Bois A, Pfisterer J, Bauman K, Karlan BY, Lester J, Cunningham JM, Larson MC, McCauley BM, Kjaer SK, Jensen A, Hogdall CK, Hogdall E, Schildkraut JM, Riggan MJ, Berchuck A, Cramer DW, Terry KL, Bjorge L, Webb PM, Friedlander M, Pejovic T, Moffitt M, Glasspool R, May T, Ene GEV, Huntsman DG, Woo M, Carney ME, Hinsley S, Heitz F, Fereday S, Kennedy CJ, Edwards SL, Winham SJ, deFazio A, Pharoah PDP, Goode EL, MacGregor S, Chenevix-Trench G. Identification of a Locus Near ULK1 Associated With Progression-Free Survival in Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:1669-1680. [PMID: 34162658 PMCID: PMC8419101 DOI: 10.1158/1055-9965.epi-20-1817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance. METHODS We carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy. RESULTS We found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro. CONCLUSIONS The locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association. IMPACT This finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604.
Collapse
Affiliation(s)
- Michael C J Quinn
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karen McCue
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wei Shi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sharon E Johnatty
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew Civitarese
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dylan M Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan P Tyrer
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Sebastian M Armasu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Puya Gharahkhani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yi Lu
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bo Gao
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ann-Marie Patch
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Fasching
- Division of Hematology and Oncology, Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Digna R Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Maria J Garcia
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Computational Oncology Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Marc T Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kirsten Moysich
- Division of Cancer Prevention and Population Sciences, Cancer Pathology & Prevention, Roswell Park Cancer Institute, Buffalo, New York
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | | | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Bryan M McCauley
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Susanne K Kjaer
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Claus K Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Daniel W Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Melissa Moffitt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rosalind Glasspool
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom
| | - Taymaa May
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle E V Ene
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - David G Huntsman
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Woo
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Samantha Hinsley
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, United Kingdom
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Stacey L Edwards
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Worts Causeway, Cambridge, United Kingdom
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Stuart MacGregor
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|