1
|
Moriya M, Oyama T, Goto M, Ikebukuro K, Yoshida W. Protocol for circular dichroism spectral analysis of the thermal stability of CpG-methylated quadruplex structures. STAR Protoc 2025; 6:103646. [PMID: 39985771 PMCID: PMC11904582 DOI: 10.1016/j.xpro.2025.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
G-quadruplex and intercalated motif are quadruplex structures of which sequences are enriched in promoters. Here, we present a protocol for circular dichroism spectral analysis of the thermal stability of CpG-methylated quadruplex structures. We describe steps for preparing the oligonucleotide sample, measuring the circular dichroism spectrum of methylated quadruplex structures, and calculating thermodynamic parameters using Python 3. For complete details on the use and execution of this protocol, please refer to Kimura et al.1.
Collapse
Affiliation(s)
- Momo Moriya
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Taiji Oyama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Sales Division, JASCO Corporation, 2967-5 Ishikawa, Hachioji, Tokyo 192-8537, Japan.
| | - Masanori Goto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
2
|
Diggins L, Ross D, Bhanot S, Corallo R, Daley R, Patel K, Lewis O, Donahue S, Thaddeus J, Hiers L, Syed C, Eagerton D, Mohanty BK. CD spectra reveal the state of G-quadruplexes and i-motifs in repeated and other DNA sequences. BIOPHYSICAL REPORTS 2025; 5:100187. [PMID: 39608571 PMCID: PMC11699388 DOI: 10.1016/j.bpr.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The B-DNA of the genome contains numerous sequences that can form various noncanonical structures including G-quadruplex (G4), formed by two or more stacks of four guanine residues in a plane, and intercalating motif (i-motif [iM]) formed by alternately arranged C-C+ pairs. One of the easy yet sensitive methods to study G4s and iMs is circular dichroism (CD) spectroscopy, which generates characteristic G4 and iM peaks. We have analyzed and compared the effects of various environmental factors including pH, buffer composition, temperature, flanking sequences, complimentary DNA strands, and single-stranded DNA binding protein (SSB) on the CD patterns of G4s and iMs generated by two groups of DNA molecules, one containing tandem repeats of GGGGCC and CCCCGG from the C9ORF72 gene associated with amyotrophic lateral sclerosis and frontotemporal dementia, and the second containing polyG/polyC clusters from oncogene promoter-proximal regions without such tandem repeats. Changes in pH caused drastic changes in CCCCGG-iM and GGGGCC-G4 and the changes were dependent on repeat numbers and G-C basepairing. In contrast, with the DNA sequences from the promoter-proximal regions of oncogenes, iMs disassembled upon pH changes with the peak slowly shifting to lower wavelength but the G4s did not show significant change. Complementary DNA strands and flanking DNA sequences also regulate G4 and iM formation. The SSB disassembled both G4s and iMs formed by almost all sequences suggesting an in vivo role for SSBs in the disassembly of G4s and iMs during DNA replication and other DNA transactions.
Collapse
Affiliation(s)
- Levi Diggins
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Daniel Ross
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Sundeep Bhanot
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Rebecca Corallo
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Rachel Daley
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Krishna Patel
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Olivia Lewis
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Shane Donahue
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Jacob Thaddeus
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Lauren Hiers
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Christopher Syed
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - David Eagerton
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Bidyut K Mohanty
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina.
| |
Collapse
|
3
|
Mohanty SK, Chiaromonte F, Makova KD. Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621973. [PMID: 39574740 PMCID: PMC11580976 DOI: 10.1101/2024.11.05.621973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that can form at approximately 1% of the human genome. G4s contribute to point mutations and structural variation and thus facilitate genomic instability. They play important roles in regulating replication, transcription, and telomere maintenance, and some of them evolve under purifying selection. Nevertheless, the evolutionary dynamics of G4s has remained underexplored. Here we conducted a comprehensive analysis of predicted G4s (pG4s) in the recently released, telomere-to-telomere (T2T) genomes of human and other great apes-bonobo, chimpanzee, gorilla, Bornean orangutan, and Sumatran orangutan. We annotated tens of thousands of new pG4s in T2T compared to previous ape genome assemblies, including 41,236 in the human genome. Analyzing species alignments, we found approximately one-third of pG4s shared by all apes studied and identified thousands of species- and genus-specific pG4s. pG4s accumulated and diverged at rates consistent with divergence times between the studied species. We observed a significant enrichment and hypomethylation of pG4 shared across species at regulatory regions, including promoters, 5' and 3'UTRs, and origins of replication, strongly suggesting their formation and functional role in these regions. pG4s shared among great apes displayed lower methylation levels compared to species-specific pG4s, suggesting evolutionary conservation of functional roles of the former. Many species-specific pG4s were located in the repetitive and satellite regions deciphered in the T2T genomes. Our findings illuminate the evolutionary dynamics of G4s, their role in gene regulation, and their potential contribution to species-specific adaptations in great apes, emphasizing the utility of high-resolution T2T genomes in uncovering previously elusive genomic features.
Collapse
Affiliation(s)
- Saswat K. Mohanty
- Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
4
|
Mayer MD, Lange MJ. G-quadruplex formation in RNA aptamers selected for binding to HIV-1 capsid. Front Chem 2024; 12:1425515. [PMID: 39502140 PMCID: PMC11536715 DOI: 10.3389/fchem.2024.1425515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
HIV-1 capsid protein (CA) is essential for viral replication and interacts with numerous host factors to facilitate successful infection. Thus, CA is an integral target for the study of virus-host dynamics and therapeutic development. The multifaceted functions of CA stem from the ability of CA to assemble into distinct structural components that come together to form the mature capsid core. Each structural component, including monomers, pentamers, and hexamers, presents a variety of solvent-accessible surfaces. However, the structure-function relationships of these components that facilitate replication and virus-host interactions have yet to be fully elucidated. A major challenge is the genetic fragility of CA, which precludes the use of many common methods. To overcome these constraints, we identified CA-targeting aptamers with binding specificity for either the mature CA hexamer lattice alone or both the CA hexamer lattice and soluble CA hexamer. To enable utilization of these aptamers as molecular tools for the study of CA structure-function relationships in cells, understanding the higher-order structures of these aptamers is required. While our initial work on a subset of aptamers included predictive and qualitative biochemical characterizations that provided insight into aptamer secondary structures, these approaches were insufficient for determining more complex non-canonical architectures. Here, we further clarify aptamer structural motifs using focused, quantitative biophysical approaches, primarily through the use of multi-effective spectroscopic methods and thermodynamic analyses. Aptamer L15.20.1 displayed particularly strong, unambiguous indications of stable RNA G-quadruplex (rG4) formation under physiological conditions in a region of the aptamer also previously shown to be necessary for CA-aptamer interactions. Non-canonical structures, such as the rG4, have distinct chemical signatures and interfaces that may support downstream applications without the need for complex modifications or labels that may negatively affect aptamer folding. Thus, aptamer representative L15.20.1, containing a putative rG4 in a region likely required for aptamer binding to CA with probable function under cellular conditions, may be a particularly useful tool for the study of HIV-1 CA.
Collapse
Affiliation(s)
- Miles D. Mayer
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| |
Collapse
|
5
|
Long W, Zeng YX, Zheng BX, Li YB, Wang YK, Chan KH, She MT, Lu YJ, Cao C, Wong WL. Targeting hTERT Promoter G-Quadruplex DNA Structures with Small-Molecule Ligand to Downregulate hTERT Expression for Triple-Negative Breast Cancer Therapy. J Med Chem 2024; 67:13363-13382. [PMID: 38987863 DOI: 10.1021/acs.jmedchem.4c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Human telomerase reverse transcriptase (hTERT) may have noncanonical functions in transcriptional regulation and metabolic reprogramming in cancer cells, but it is a challenging target. We thus developed small-molecule ligands targeting hTERT promoter G-quadruplex DNA structures (hTERT G4) to downregulate hTERT expression. Ligand 5 showed high affinity toward hTERT G4 (Kd = 1.1 μM) and potent activity against triple-negative breast cancer cells (MDA-MB-231, IC50 = 1 μM). In cell-based assays, 5 not only exerts markedly inhibitory activity on classical telomere functions including decreased telomerase activity, shortened telomere length, and cellular senescence but also induces DNA damage, acute cellular senescence, and apoptosis. This study reveals that hTERT G4-targeting ligand may cause mitochondrial dysfunction, disrupt iron metabolism and activate ferroptosis in cancer cells. The in vivo antitumor efficacy of 5 was also evaluated in an MDA-MB-231 xenograft mouse model and approximately 78.7% tumor weight reduction was achieved. No observable toxicity against the major organs was observed.
Collapse
Affiliation(s)
- Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yao-Xun Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Bo Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ya-Kun Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Figueroa GB, D'souza S, Pereira HS, Vasudeva G, Figueroa SB, Robinson ZE, Badmalia MD, Meier-Stephenson V, Corcoran JA, van Marle G, Ni Y, Urban S, Coffin CS, Patel TR. Development of a single-domain antibody to target a G-quadruplex located on the hepatitis B virus covalently closed circular DNA genome. J Med Virol 2024; 96:e29692. [PMID: 38804172 DOI: 10.1002/jmv.29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.
Collapse
Affiliation(s)
- Gerardo B Figueroa
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Simmone D'souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Higor S Pereira
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gunjan Vasudeva
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sara B Figueroa
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zachary E Robinson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Maulik D Badmalia
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vanessa Meier-Stephenson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer A Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Roy L, Roy A, Bose D, Banerjee N, Chatterjee S. Unraveling the structural aspects of the G-quadruplex in SMO promoter and elucidating its contribution in transcriptional regulation. J Biomol Struct Dyn 2023; 42:12228-12243. [PMID: 37878583 DOI: 10.1080/07391102.2023.2268200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Debopriya Bose
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
8
|
Kimura K, Oshikawa D, Ikebukuro K, Yoshida W. Stabilization of VEGF i-motif structure by CpG methylation. Biochem Biophys Res Commun 2022; 594:88-92. [PMID: 35078112 DOI: 10.1016/j.bbrc.2022.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
The intercalated motif (i-motif) is a non-canonical nucleic acid structure formed by intercalated hemi-protonated cytosine base pairs (C-C+) under acidic conditions. The i-motif structure formation is involved in biological processes such as transcription regulation. Therefore, the identification of factors controlling i-motif formation is important in elucidating the cellular functions it controls. We previously reported that the VEGF G-quadruplex structure is stabilized by CpG methylation. In this study, the effect of CpG methylation on the stability of the VEGF i-motif structure was investigated. The VEGF i-motif-forming oligonucleotide contains four cytosines on CpG sites, and three of the four cytosines (C4, C15, and C20) are involved in C-C+ formation in the i-motif structure. Circular dichroism (CD) spectra analysis demonstrated that full CpG methylation increased the pH of mid transition (pHT) of the i-motif structure by 0.1, and the melting temperature (Tm) by 5.1 °C in 25 mM sodium cacodylate buffer at pH 5.0. Moreover, single methylation at C4, C15, and C20 increased Tm by 0.5, 1.7, and 2.0 °C in the buffer, respectively. These results demonstrated that CpG methylation stabilized the VEGF i-motif structure.
Collapse
Affiliation(s)
- Kosuke Kimura
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Daiki Oshikawa
- Graduate School of Management of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
9
|
Laddachote S, Ishii R, Yoshida W. Effects of CpG methylation on the thermal stability of c-kit2, c-kit*, and c-kit1 G-quadruplex structures. BBA ADVANCES 2021; 1:100007. [PMID: 37082005 PMCID: PMC10074881 DOI: 10.1016/j.bbadva.2021.100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
In genomic DNA, G-quadruplex (G4)-forming DNA can form either a duplex or G4 structure, suggesting that understanding the factors regulating G4 formation is important for revealing the cellular functions controlled by G4 formation. Cytosine DNA methylation in the CpG islands is known to play an important role in transcriptional regulation. Additionally, CpG methylation increases the thermal stability of G4 structures such as BCL2 and VEGF G4. In this study, we evaluated the effects of CpG methylation in three G4 structures (c-kit2, c-kit*, and c-kit1) produced by the c-KIT promoter. Each was analyzed using circular dichroism (CD) melting analysis. The results demonstrate that CpG methylation does not alter the thermal stability of c-kit2 G4 structure when formed in the presence of K+; a single-CpG methylation at C1 or C11 decreases the thermal stability of any c-kit2 G4 structure formed in the presence of Na+ and Mg2+ while methylation at C5 increases the thermal stability; CpG methylation does not alter the thermal stability of c-kit1 or c-kit* G4 structures formed in the presence of K+; and the c-kit1 and c-kit* G4-forming oligonucleotides do not form G4 structures in the presence of Na+ and Mg2+. These results provide important clues for understanding the regulatory mechanisms underlying the formation of CpG methylation-induced G4 structures.
Collapse
|
10
|
Ciszewski L, Lu-Nguyen N, Slater A, Brennan A, Williams HEL, Dickson G, Searle MS, Popplewell L. G-quadruplex ligands mediate downregulation of DUX4 expression. Nucleic Acids Res 2020; 48:4179-4194. [PMID: 32182342 PMCID: PMC7192601 DOI: 10.1093/nar/gkaa146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Abnormal DUX4 expression in skeletal muscles plays a key role in facioscapulohumeral muscular dystrophy (FSHD) pathogenesis, although the molecular mechanisms regulating DUX4 expression are not fully defined. Using bioinformatic analysis of the genomic DUX4 locus, we have identified a number of putative G-quadruplexes (GQs) forming sequences. Their presence was confirmed in synthetic oligonucleotiode sequences derived from the enhancer, promoter and transcript of DUX4 through circular dichroism and nuclear magnetic resonance analysis. We further examined the binding affinity of a naturally occurring GQ stabilizing compound, berberine, to these non-canonical genetic structures using UV–Vis and fluorescence spectroscopy. Subsequent in vitro study in FSHD patient myoblasts indicated that berberine treatment reduced DUX4 expression and also expression of genes normally switched on by DUX4. Further investigation in a mouse model overexpressing exogenous DUX4 confirmed the therapeutic effects of berberine in downregulating DUX4 protein expression, inhibiting muscle fibrosis, and consequently rescuing muscle function. Our data demonstrate for the first time that GQs are present in the DUX4 locus and that the GQ interactive ligand reduces DUX4 expression suggesting potential role of GQs in FSHD pathogenesis. Our work provides the basis of a novel therapeutic strategy for the treatment of FSHD.
Collapse
Affiliation(s)
- Lukasz Ciszewski
- Department of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Alex Slater
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andrew Brennan
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - George Dickson
- Department of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Linda Popplewell
- Department of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
11
|
G-quadruplex, Friend or Foe: The Role of the G-quartet in Anticancer Strategies. Trends Mol Med 2020; 26:848-861. [PMID: 32467069 DOI: 10.1016/j.molmed.2020.05.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The clinical applicability of G-quadruplexes (G4s) as anticancer drugs is currently being evaluated. Several G4 ligands and aptamers are undergoing clinical trials following the notable examples of quarfloxin and AS1411, respectively. In this review, we summarize the latest achievements and breakthroughs in the use of G4 nucleic acids as both therapeutic tools ('friends', as healing anticancer drugs) and targets ('foes', within the harmful cancer cell), particularly using aptamers and quadruplex-targeted ligands, respectively. We explore the recent research on synthetic G4 ligands toward the discovery of anticancer therapeutics and their mechanism of action. Additionally, we highlight recent advances in chemical and structural biology that enable the design of specific G4 aptamers to be used as novel anticancer agents.
Collapse
|
12
|
Laddachote S, Nagata M, Yoshida W. Destabilisation of the c-kit1 G-quadruplex structure by N 6-methyladenosine modification. Biochem Biophys Res Commun 2020; 524:472-476. [PMID: 32008744 DOI: 10.1016/j.bbrc.2020.01.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/08/2023]
Abstract
N6-methyladenine (m6dA) has been recently discovered in eukaryotic genomic DNA. However, there have been few reports on its biological roles. G-quadruplex (G4) is a non-canonical nucleic acid structure formed by the stacking of G-tetrads. G4-forming sequences are enriched with cis-regulatory elements in genomic DNA and the G4 structures have important roles in various cellular functions. We previously reported that CpG methylation stabilized vascular endothelial growth factor (VEGF) G4 structure. Here we report that m6dA modification destabilizes the human c-kit1 G4 structure. These results suggest that epigenetic modifications may affect G4 formation in order to regulate the biological functions.
Collapse
Affiliation(s)
- Saowalak Laddachote
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Mayu Nagata
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
13
|
Islam I, Baba Y, Witarto AB, Yoshida W. G-quadruplex–forming GGA repeat region functions as a negative regulator of the Ccnb1ip1 enhancer. Biosci Biotechnol Biochem 2019; 83:1697-1702. [DOI: 10.1080/09168451.2019.1611412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT
An enhancer located upstream of the transcriptional start site of Ccnb1ip1 containing two GGA-rich regions and a 14-GGA repeat (GGA)14 region has been previously identified. Three copies of four GGA repeats in the c-myb promoter that form a tetrad:heptad:heptad:tetrad (T:H:H:T) dimerized G-quadruplex (G4) structure reportedly functions as both a transcriptional repressor and activator. Here, the secondary structures of the two GGA-rich and (GGA)14 regions were analyzed using circular dichroism spectral analysis, which indicated that the two GGA-rich DNAs formed parallel-type G4 structures, whereas (GGA)14 DNA formed the T:H:H:T dimerized G4 structure. Reporter assays demonstrated that individual regions did not show enhancer activity; however, the deletion of the (GGA)14 region resulted in 1.5-fold higher enhancer activity than that of the whole enhancer. These results indicate that the (GGA)14 region that forms the T:H:H:T dimerized G4 structure functions as a negative regulator of the Ccnb1ip1 enhancer.
Collapse
Affiliation(s)
- Izzul Islam
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
- Department of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, Indonesia
| | - Yuji Baba
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
| | - Arief Budi Witarto
- Department of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, Indonesia
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
| |
Collapse
|
14
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
15
|
Tsukakoshi K, Saito S, Yoshida W, Goto S, Ikebukuro K. CpG Methylation Changes G-Quadruplex Structures Derived from Gene Promoters and Interaction with VEGF and SP1. Molecules 2018; 23:molecules23040944. [PMID: 29670067 PMCID: PMC6017926 DOI: 10.3390/molecules23040944] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022] Open
Abstract
G-quadruplex (G4) is a DNA/RNA conformation that consists of two or more G-tetrads resulting from four-guanine bases connected by Hoogsteen-type hydrogen bonds, which is often found in the telomeres of chromatin, as well as in the promoter regions of genes. The function of G4 in the genomic DNA is being elucidated and some G4-protein interactions have been reported; these are believed to play a role in vital cellular functions. In this study, we focused on CpG methylation, a well-known epigenetic modification of the genomic DNA, especially found in the promoter regions. Although many G4-forming sequences within the genomic DNA harbor CpG sites, the relationship between CpG methylation and the binding properties of associated proteins remains unclear. We demonstrated that the binding ability of vascular endothelial growth factor (VEGF) G4 DNA to VEGF165 protein was significantly decreased by CpG methylation. We identified the binding activity of G4 DNA oligonucleotides derived from gene promoter regions to SP1, a transcription factor that interacts with a G4-forming DNA and is also altered by CpG methylation. The effect of methylation on binding affinity was accompanied by changes in G4 structure and/or topology. Therefore, this study suggested that CpG methylation might be involved in protein binding to G4-forming DNA segments for purposes of transcriptional regulation.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Shiori Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Shinichi Goto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
16
|
Yoshida W, Saikyo H, Nakabayashi K, Yoshioka H, Bay DH, Iida K, Kawai T, Hata K, Ikebukuro K, Nagasawa K, Karube I. Identification of G-quadruplex clusters by high-throughput sequencing of whole-genome amplified products with a G-quadruplex ligand. Sci Rep 2018; 8:3116. [PMID: 29449667 PMCID: PMC5814564 DOI: 10.1038/s41598-018-21514-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
G-quadruplex (G4) is a DNA secondary structure that has been found to play regulatory roles in the genome. The identification of G4-forming sequences is important to study the specific structure-function relationships of such regions. In the present study, we developed a method for identification of G4 clusters on genomic DNA by high-throughput sequencing of genomic DNA amplified via whole-genome amplification (WGA) in the presence of a G4 ligand. The G4 ligand specifically bound to G4 structures on genomic DNA; thus, DNA polymerase was arrested on the G4 structures stabilised by G4 ligand. We utilised the telomestatin derivative L1H1-7OTD as a G4 ligand and demonstrated that the efficiency of amplification of the G4 cluster regions was lower than that of the non-G4-forming regions. By high-throughput sequencing of the WGA products, 9,651 G4 clusters were identified on human genomic DNA. Among these clusters, 3,766 G4 clusters contained at least one transcriptional start site, suggesting that genes are regulated by G4 clusters rather than by one G4 structure.
Collapse
Affiliation(s)
- Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan.
| | - Hiroki Saikyo
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Ookura, Setagaya, Tokyo, 157-0074, Japan
| | - Hitomi Yoshioka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan
| | - Daniyah Habiballah Bay
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan.,Biology Department, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Keisuke Iida
- Molecular Chirality Research Center, Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Ookura, Setagaya, Tokyo, 157-0074, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Ookura, Setagaya, Tokyo, 157-0074, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Isao Karube
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|