1
|
Maheshwari S, Singh A, Verma A. Biomarkers in Alzheimer's disease: new frontiers with olfactory models. Inflammopharmacology 2025:10.1007/s10787-025-01705-1. [PMID: 40312605 DOI: 10.1007/s10787-025-01705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, presents a significant diagnostic challenge, as clinical diagnoses are often made at advanced stages when neurodegenerative damage is already extensive. The study of biomarkers is necessary for improving identification, prognosis, and disease monitoring. Current research has primarily focused on cerebrospinal fluid and imaging biomarkers, including amyloid-β (Aβ1-42), phosphorylated tau, and total tau. However, these methods are invasive, expensive, and not widely accessible. Emerging approaches aim to identify novel, cost-effective, and minimally invasive biomarkers, particularly from blood-based and other peripheral sources. This review explores the role of olfactory neuronal precursors (ONPs) derived from the olfactory neuroepithelium (ONE) as a promising and innovative model for biomarker discovery in AD. ONPs can be non-invasively obtained directly from patients, offering a unique resource to study AD-related pathophysiological mechanisms. These neuronal lineage cells exhibit characteristics that make them a reliable surrogate model for central nervous system studies, enabling the evaluation of established biomarkers and facilitating the identification of novel candidates. Additionally, we discuss the potential of ONPs to enhance clinical practice through their accessibility and suitability for high-throughput biomarker analysis. By integrating the study of ONPs with existing biomarker research, this review highlights new frontiers in the quest to refine diagnostic tools and advance our understanding of Alzheimer's disease, paving the way for innovative strategies in early detection and personalized management.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Aditya Singh
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
2
|
Jiménez-Ramírez IA, Castaño E. Non-coding RNAs in the pathogenesis of Alzheimer's disease: β-amyloid aggregation, Tau phosphorylation and neuroinflammation. Mol Biol Rep 2025; 52:183. [PMID: 39890684 DOI: 10.1007/s11033-025-10284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder primarily affecting individuals aged 65 and older, characterized by cognitive decline and diminished quality of life. The molecular hallmarks of AD include extracellular β-amyloid plaques, intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, and chronic neuroinflammation. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as potential therapeutic targets due to their regulatory roles in AD pathogenesis. For example, miR-124 has been shown to modulate Aβ levels, while lncRNAs such as BACE1-AS regulate the expression of BACE1, a crucial enzyme in Aβ production. Transcriptomic studies of AD patients have revealed dysregulation of ncRNA expression, further supporting their involvement in disease progression. This review examines the regulatory functions of ncRNAs in AD, focusing on their impact on Aβ, tau hyperphosphorylation, and neuroinflammation. Additionally, we discuss the emerging role of ncRNAs in liquid-liquid phase separation and the formation of protein aggregates, key processes contributing to AD pathology.
Collapse
Affiliation(s)
- Irma A Jiménez-Ramírez
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Enrique Castaño
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
3
|
Ng B, Avey DR, Lopes KDP, Fujita M, Vialle RA, Vyas H, Kearns NA, Tasaki S, Iatrou A, Tissera SD, Chang TH, Xu J, Yu C, Sultan F, Menon V, Gaiteri C, De Jager PL, Bennett DA, Wang Y. Spatial Expression of Long Non-Coding RNAs in Human Brains of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.27.620550. [PMID: 39554066 PMCID: PMC11565709 DOI: 10.1101/2024.10.27.620550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators of physiological and pathological processes, with their dysregulation increasingly implicated in aging and Alzheimer's disease (AD). Using spatial transcriptomics, we analyzed 78 postmortem brain sections from 21 ROSMAP participants to map the spatial expression of lncRNAs in the dorsolateral prefrontal cortex of aged human brains. Compared to mRNAs, lncRNAs exhibited greater subregion-specific expression, with enrichment in antisense and lincRNA biotypes. Network analysis identified 193 gene modules across eight subregions, including lncRNA-enriched modules involved in critical biological processes. We also identified AD differentially expressed (DE) lncRNAs, which showed greater subregion specificity than AD DE mRNAs. Gene set enrichment analysis highlighted the involvement of these AD DE lncRNAs in epigenetic regulation and chromatin remodeling, including enrichment for HDAC target genes such as OIP5-AS1. Statistical modeling suggested that interactions between OIP5-AS1 and HDAC proteins, particularly HDAC11, were associated with tau tangles in excitatory neurons and plaque burden in microglia. This study provides a comprehensive resource of lncRNA spatial expression in the aged human brain and uncovers potential functional roles of lncRNAs in AD pathogenesis.
Collapse
|
4
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
5
|
Wu X, Xia P, Yang L, Lu C, Lu Z. The roles of long non-coding RNAs in Alzheimer's disease diagnosis, treatment, and their involvement in Alzheimer's disease immune responses. Noncoding RNA Res 2024; 9:659-666. [PMID: 38577023 PMCID: PMC10987299 DOI: 10.1016/j.ncrna.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia, presenting a substantial danger to the health and well-being of the aged population. It has arisen as a significant public health problem with considerable socioeconomic repercussions. Unfortunately, no effective treatments or diagnostic tools are available for Alzheimer's disease. Despite substantial studies on the pathophysiology of Alzheimer's, the molecular pathways underpinning its development remain poorly understood. Long non-coding RNAs (lncRNAs) vary in size from 200 nucleotides to over 100 kilobytes and have been found to play critical roles in various vital biological processes that play critical in developing Alzheimer's disease. This review intends to examine the functions of long non-coding RNAs in diagnosing and treating Alzheimer's disease and their participation in immunological responses associated with AD.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
7
|
Kumar M, Swanson N, Ray S, Buch S, Saraswathi V, Sil S. Astrocytes in Amyloid Generation and Alcohol Metabolism: Implications of Alcohol Use in Neurological Disorder(s). Cells 2024; 13:1173. [PMID: 39056755 PMCID: PMC11274690 DOI: 10.3390/cells13141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
As per the National Survey on Drug Use and Health, 10.5% of Americans aged 12 years and older are suffering from alcohol use disorder, with a wide range of neurological disorders. Alcohol-mediated neurological disorders can be linked to Alzheimer's-like pathology, which has not been well studied. We hypothesize that alcohol exposure can induce astrocytic amyloidosis, which can be corroborated by the neurological disorders observed in alcohol use disorder. In this study, we demonstrated that the exposure of astrocytes to ethanol resulted in an increase in Alzheimer's disease markers-the amyloid precursor protein, Aβ1-42, and the β-site-cleaving enzyme; an oxidative stress marker-4HNE; proinflammatory cytokines-TNF-α, IL1β, and IL6; lncRNA BACE1-AS; and alcohol-metabolizing enzymes-alcohol dehydrogenase, aldehyde dehydrogenase-2, and cytochrome P450 2E1. A gene-silencing approach confirmed the regulatory role of lncRNA BACE1-AS in amyloid generation, alcohol metabolism, and neuroinflammation. This report is the first to suggest the involvement of lncRNA BACE1-AS in alcohol-induced astrocytic amyloid generation and alcohol metabolism. These findings will aid in developing therapies targeting astrocyte-mediated neurological disorders and cognitive deficits in alcohol users.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalie Swanson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Viswanathan Saraswathi
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Ilieva MS. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis. Cells 2024; 13:1063. [PMID: 38920691 PMCID: PMC11201512 DOI: 10.3390/cells13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.
Collapse
Affiliation(s)
- Mirolyuba Simeonova Ilieva
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Ole Maaløes Vej 5, 3rd Floor, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Zhao Y, Ai W, Zheng J, Hu X, Zhang L. A bibliometric and visual analysis of epigenetic research publications for Alzheimer's disease (2013-2023). Front Aging Neurosci 2024; 16:1332845. [PMID: 38292341 PMCID: PMC10824959 DOI: 10.3389/fnagi.2024.1332845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Background Currently, the prevalence of Alzheimer's disease (AD) is progressively rising, particularly in developed nations. There is an escalating focus on the onset and progression of AD. A mounting body of research indicates that epigenetics significantly contributes to AD and holds substantial promise as a novel therapeutic target for its treatment. Objective The objective of this article is to present the AD areas of research interest, comprehend the contextual framework of the subject research, and investigate the prospective direction for future research development. Methods ln Web of Science Core Collection (WOSCC), we searched documents by specific subject terms and their corresponding free words. VOSviewer, CiteSpace and Scimago Graphica were used to perform statistical analysis on measurement metrics such as the number of published papers, national cooperative networks, publishing countries, institutions, authors, co-cited journals, keywords, and visualize networks of related content elements. Results We selected 1,530 articles from WOSCC from January 2013 to June 2023 about epigenetics of AD. Based on visual analysis, we could get that China and United States were the countries with the most research in this field. Bennett DA was the most contributed and prestigious scientist. The top 3 cited journals were Journal of Alzheimer's Disease, Neurobiology of Aging and Molecular Neurobiology. According to the analysis of keywords and the frequency of citations, ncRNAs, transcription factor, genome, histone modification, blood DNA methylation, acetylation, biomarkers were hot research directions in AD today. Conclusion According to bibliometric analysis, epigenetic research in AD was a promising research direction, and epigenetics had the potential to be used as AD biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- YaPing Zhao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - WenJing Ai
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - JingFeng Zheng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - XianLiang Hu
- Chengdu Eighth People’s Hospital, Geriatric Hospital of Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Sichuan Key Laboratory of Development and Regeneration, Department of Neurobiology, Chengdu Medical College, Chengdu, China
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
10
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Shobeiri P, Alilou S, Jaberinezhad M, Zare F, Karimi N, Maleki S, Teixeira AL, Perry G, Rezaei N. Circulating long non-coding RNAs as novel diagnostic biomarkers for Alzheimer's disease (AD): A systematic review and meta-analysis. PLoS One 2023; 18:e0281784. [PMID: 36947499 PMCID: PMC10032479 DOI: 10.1371/journal.pone.0281784] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been reported to be involved in the pathogenesis of neurodegenerative diseases. It has also been hypothesized that plasma exosomal lncRNAs may be used as Alzheimer's disease (AD) biomarkers. In this systematic review, we compiled all studies on the subject to evaluate the accuracy of lncRNAs in identifying AD cases through meta-analysis. METHODS A PRISMA-compliant systematic search was conducted in PubMed/MEDLINE, EMBASE, and Web of Science databases for English publications till September 2022. We included all observational studies published which investigated the sensitivity and specificity of various lncRNAs in plasma samples of AD diagnosis. Our search strategy included lncRNA and all the related spelling and abbreviation variations combined with the keyword Alzheimer's disease. Methodological quality was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-II) tool. The meta-analysis was carried out using the area under the Receiver Operator Characteristic (ROC) curves (AUC) and sensitivity and specificity values to assess the accuracy of the identified lncRNAs in AD diagnosis. To account for the predicted heterogeneity of the study, a random-effects model was used. All the statistical analyses and visualizations were conducted using Stata 17.0 software. RESULTS A total of seven studies (AD patients = 553, healthy controls = 513) were included in the meta-analysis. Three lncRNAs were upregulated (RNA BACE-AS1, RNA NEAT1, RNA GAS5), and one lncRNA (MALAT1) was downregulated in plasma samples of AD patients. RNA 51A and RNA BC200 were reported to have variable expression patterns. A lncRNA (RNA 17A) was not significantly different between AD and control groups. The pooled sensitivity, specificity, and AUC values of lncRNAs in identifying AD were (0.74; 95% CI [0.63, 0.82], I2 = 79.2%), (0.88; 95% CI [0.75, 0.94], I2 = 88.9%), and 0.86; 95% CI [0.82, 0.88], respectively. In addition, the pooled diagnostic odds ratio (DOR) of the five individual lncRNAs in AD diagnosis was 20. CONCLUSION lncRNAs had high accuracy in identifying AD and must be seen as a promising diagnostic biomarker of the disease.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Children’s Medical Center Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Jaberinezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshad Zare
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Karimi
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Saba Maleki
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, United States of America
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Inhibition of VDAC1 Rescues A β 1-42-Induced Mitochondrial Dysfunction and Ferroptosis via Activation of AMPK and Wnt/ β-Catenin Pathways. Mediators Inflamm 2023; 2023:6739691. [PMID: 36816741 PMCID: PMC9937775 DOI: 10.1155/2023/6739691] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 02/12/2023] Open
Abstract
Beta-amyloid (Aβ) accumulation in the brains of Alzheimer's disease (AD) patients leads to mitochondrial dysfunction and ferroptosis in neurons. Voltage-dependent anion channel 1 (VDAC1) is a major protein in the mitochondrial outer membrane. It has been reported that VDAC1 associated with mitochondrial dysfunction and ferroptosis. However, the mechanism by which VDAC1 regulates mitochondrial dysfunction and ferroptosis of neurons in AD remains unclear. This study is aimed at investigating the mechanism of action of VDAC1 in mitochondrial dysfunction and ferroptosis in neurons of the AD model. In this study, we determined cell viability after treatment with Aβ 1-42 via the MTT assay. The SOD, MDA, ROS, and MMP production was measured via the SOD kit, MDA kit, DCFDA staining, and JC-1 staining. The memory abilities of mice were detected via the Morris water maze test. The expression of AMPK/mTOR, Wnt/β-catenin, and GPX4 regulated by VDAC1 was detected via western blotting. Our present study showed that PC12 cells had decreased cell viability, increased LDH release, and decreased GPX4 expression after Aβ 1-42 treatment. Meanwhile, Aβ 1-42 induced MMP and SOD downregulation and increased MDA and ROS generation in PC12 cells. In addition, the expression of VDAC1 is increased in the brain tissue of AD mice and Aβ 1-42-treated PC12 cells. Further investigation of the role of VDAC1 in regulating AD found that all effects induced by Aβ 1-42 were reversed by inhibition of VDAC1. Additionally, inhibition of VDAC1 activates the AMPK/mTOR and Wnt/β-catenin pathways. Taken together, these findings demonstrate that inhibition of VDAC1 alleviates mitochondrial dysfunction and ferroptosis in AD neurons by activating AMPK/mTOR and Wnt/β-catenin.
Collapse
|
13
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
14
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
15
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|
16
|
Bampatsias D, Mavroeidis I, Tual-Chalot S, Vlachogiannis NL, Bonini F, Sachse M, Mavraganis G, Mareti A, Kritsioti C, Laina A, Delialis D, Ciliberti G, Sopova K, Gatsiou A, Martelli F, Georgiopoulos G, Stellos K, Stamatelopoulos K. Beta-secretase-1 antisense RNA is associated with vascular ageing and atherosclerotic cardiovascular disease. Thromb Haemost 2022; 122:1932-1942. [PMID: 35915966 PMCID: PMC9626031 DOI: 10.1055/a-1914-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background
The noncoding antisense transcript for β-secretase-1 (
BACE1-AS
) is a long noncoding RNA with a pivotal role in the regulation of amyloid-β (Aβ). We aimed to explore the clinical value of
BACE1-AS
expression in atherosclerotic cardiovascular disease (ASCVD).
Methods
Expression of
BACE1-AS
and its target, β-secretase 1 (
BACE1
) mRNA, was measured in peripheral blood mononuclear cells derived from 434 individuals (259 without established ASCVD [non-CVD], 90 with stable coronary artery disease [CAD], and 85 with acute coronary syndrome). Intima-media thickness and atheromatous plaques evaluated by ultrasonography, as well as arterial wave reflections and pulse wave velocity, were measured as markers of subclinical ASCVD. Patients were followed for a median of 52 months for major adverse cardiovascular events (MACE).
Results
In the cross-sectional arm,
BACE1-AS
expression correlated with
BACE1
expression (
r
= 0.396,
p
< 0.001) and marginally with Aβ1–40 levels in plasma (
r
= 0.141,
p
= 0.008). Higher
BACE1-AS
was associated with higher estimated CVD risk assessed by HeartScore for non-CVD subjects and by European Society of Cardiology clinical criteria for the total population (
p
< 0.05 for both).
BACE1-AS
was associated with higher prevalence of CAD (odds ratio [OR] = 1.85, 95% confidence interval [CI]: 1.37–2.5), multivessel CAD (OR = 1.36, 95% CI: 1.06–1.75), and with higher number of diseased vascular beds (OR = 1.31, 95% CI: 1.07–1.61, for multiple diseased vascular beds) after multivariable adjustment for traditional cardiovascular risk factors. In the prospective arm,
BACE1-AS
was an independent predictor of MACE in high cardiovascular risk patients (adjusted hazard ratio = 1.86 per ascending tertile, 95% CI: 1.011–3.43,
p
= 0.046).
Conclusion
BACE1-AS
is associated with the incidence and severity of ASCVD.
Collapse
Affiliation(s)
- Dimitrios Bampatsias
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Ioannis Mavroeidis
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Simon Tual-Chalot
- Institute of Bioscience, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Nikolaos L Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Francesca Bonini
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany
| | - Marco Sachse
- Department of Cardiovascular Research, Goethe University Frankfurt Faculty 16 Medicine, Frankfurt am Main, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany
| | - Georgios Mavraganis
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens Aiginitio Hospital, Athens, Greece
| | - Alexia Mareti
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Kritsioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Alexandra University Hospital, Department of Clinical Therapeutics,, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Delialis
- National and Kapodistrian University of Athens School of Medicine Therapeutic Clinic, Athens, Greece
| | - Giorgia Ciliberti
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany
| | - Kateryna Sopova
- Faculty of Medical Sciences, Newcastle University, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Aikaterini Gatsiou
- , Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Georgios Georgiopoulos
- National and Kapodistrian University of Athens School of Medicine Therapeutic Clinic, Athens, Greece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany.,German Centre for Cardiovascular Research (DZHK), Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany.,Department of Cardiology, Ruprecht Karls University Heidelberg Faculty of Medicine Mannheim, Mannheim, Germany.,Biosciences Institute, Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Kimon Stamatelopoulos
- Alexandra University Hospital, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.,Vascular Biology and Medicine Theme, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
17
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Sayad A, Najafi S, Hussen BM, Abdullah ST, Movahedpour A, Taheri M, Hajiesmaeili M. The Emerging Roles of the β-Secretase BACE1 and the Long Non-coding RNA BACE1-AS in Human Diseases: A Focus on Neurodegenerative Diseases and Cancer. Front Aging Neurosci 2022; 14:853180. [PMID: 35386116 PMCID: PMC8978056 DOI: 10.3389/fnagi.2022.853180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023] Open
Abstract
The β-Secretase (BACE1) is widely studied to be particularly involved in amyloid deposition, a process known as the pathogenic pathway in neurodegenerative diseases. Therefore, BACE1 expression is frequently reported to be upregulated in brain samples of the patients with Alzheimer’s disease (AD). BACE1 expression is regulated by BACE1-AS, a long non-coding RNA (lncRNA), which is transcribed in the opposite direction to its locus. BACE1-AS positively regulates the BACE1 expression, and their expression levels are regulated in physiological processes, such as brain and vascular homeostasis, although their roles in the regulation of amyloidogenic process have been studied further. BACE1-AS dysregulation is reported consistent with BACE1 in a number of human diseases, such as AD, Parkinson’s disease (PD), heart failure (HF), and mild cognitive impairment. BACE1 or less BACE1-AS inhibition has shown therapeutic potentials particularly in decreasing manifestations of amyloid-linked neurodegenerative diseases. Here, we have reviewed the role of lncRNA BACE1 and BACE1-AS in a number of human diseases focusing on neurodegenerative disorders, particularly, AD.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammadreza Hajiesmaeili,
| |
Collapse
|
19
|
RNA Molecular Signature Profiling in PBMCs of Sporadic ALS Patients: HSP70 Overexpression Is Associated with Nuclear SOD1. Cells 2022; 11:cells11020293. [PMID: 35053410 PMCID: PMC8774074 DOI: 10.3390/cells11020293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) is one of the causative genes associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder. SOD1 aggregation contributes to ALS pathogenesis. A fraction of the protein is localized in the nucleus (nSOD1), where it seems to be involved in the regulation of genes participating in the oxidative stress response and DNA repair. Peripheral blood mononuclear cells (PBMCs) were collected from sporadic ALS (sALS) patients (n = 18) and healthy controls (n = 12) to perform RNA-sequencing experiments and differential expression analysis. Patients were stratified into groups with “high” and “low” levels of nSOD1. We obtained different gene expression patterns for high- and low-nSOD1 patients. Differentially expressed genes in high nSOD1 form a cluster similar to controls compared to the low-nSOD1 group. The pathways activated in high-nSOD1 patients are related to the upregulation of HSP70 molecular chaperones. We demonstrated that, in this condition, the DNA damage is reduced, even under oxidative stress conditions. Our findings highlight the importance of the nuclear localization of SOD1 as a protective mechanism in sALS patients.
Collapse
|
20
|
Lan Z, Chen Y, Jin J, Xu Y, Zhu X. Long Non-coding RNA: Insight Into Mechanisms of Alzheimer's Disease. Front Mol Neurosci 2022; 14:821002. [PMID: 35095418 PMCID: PMC8795976 DOI: 10.3389/fnmol.2021.821002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- *Correspondence: Xiaolei Zhu
| |
Collapse
|
21
|
Li J, Wang S, Zhang S, Cheng D, Yang X, Wang Y, Yin H, Liu Y, Liu Y, Bai H, Geng S, Wang Y. Curcumin slows the progression of Alzheimer's disease by modulating mitochondrial stress responses via JMJD3-H3K27me3-BDNF axis. Am J Transl Res 2021; 13:13380-13393. [PMID: 35035682 PMCID: PMC8748089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Disturbance of mitochondrial proteins by amyloid beta-protein (Aβ) that associates with mitochondrial stress responses (MSR) is one of the pathological mechanisms of Alzheimer's disease (AD). This study tried to explore whether the axis of Jumonji domain-containing protein 3 (JMJD3)-trimethylated lysine 27 on histone H3 (H3K27me3)-brain derived neurotrophic factor (BDNF) is involved in the regulation of MSR which in turn intervenes in the process of AD, and whether curcumin (CUR) has a protective role against AD by influencing this axis, aiming to provide insights into AD treatment. AD mouse models presented a significant aggregation of Aβ, with conspicuous pathological changes in brain tissues and an increase in neuronal apoptosis. Moreover, the mRNA and protein levels of JMJD3 and BDNF were down-regulated, H3K27me3 methylation levels were increased, and the MSR markers (ClpP, HSP6, HSP-60, and ATFS-1) showed abnormal alterations. In in-vitro cellular models of AD, up-regulation of either JMJD3 or BDNF up-regulated BDNF levels, down-regulated H3K27me3 methylation levels, mitigated abnormalities of MSR markers and Aβ aggregation, and increased cell proliferation and inhibited apoptosis. JMJD3 was confirmed to regulate Aβ and MSR via BDNF. In addition, CUR was confirmed to modulate JMJD3-H3K27me3-BDNF axis. Furthermore, moderate and high doses of CUR could improve the morphology and histopathology of the brain, inhibit Aβ aggregation and cell apoptosis, and maintain MSR balance at least partly by modulating the JMJD3-H3K27me3-BDNF axis. To sum up, moderate and high doses of CUR regulate the progression of AD via MSR JMJD3-H3K27me3-BDNF axis.
Collapse
Affiliation(s)
- Jingna Li
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Shanshan Wang
- Department of Neurology, 960 Hospital of PLAZibo 255300, Shandong, China
| | - Simiao Zhang
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Dan Cheng
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Xiaopeng Yang
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Yutong Wang
- Qilu Medical CollegeZibo 255300, Shandong, China
| | - Honglei Yin
- Department of Neurology, 960 Hospital of PLAZibo 255300, Shandong, China
| | - Yajun Liu
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Yanqiu Liu
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Hongying Bai
- Department of Neurology, 960 Hospital of PLAZibo 255300, Shandong, China
| | - Shuang Geng
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
| | - Yunliang Wang
- Department of Neurology, Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
- Qilu Medical CollegeZibo 255300, Shandong, China
| |
Collapse
|
22
|
Cui XY, Zhan JK, Liu YS. Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev 2021; 72:101480. [PMID: 34601136 DOI: 10.1016/j.arr.2021.101480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Vascular aging is a major cause of morbidity and mortality in the elderly population. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), forming the intima and media layers of the vessel wall respectively, are closely associated with the process of vascular aging and vascular aging-related diseases. Numerous studies have revealed the pathophysiologic mechanism through which lncRNA contributes to vascular aging, hence more attention is now paid to the role played by antisense long non-coding RNA (AS-lncRNA) in the pathogenesis of vascular aging. Nonetheless, only a small number of studies focus on the specific mechanism through which AS-lncRNA mediates vascular aging. In this review, we summarize the roles and functions of AS-lncRNA with regards to the development of vascular aging and vascular aging-related disease. We also aim to deepen our understanding of this process and provide alternative therapeutic modalities for vascular aging-related diseases.
Collapse
Affiliation(s)
- Xing-Yu Cui
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China.
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
23
|
Najafi S, Tan SC, Raee P, Rahmati Y, Asemani Y, Lee EHC, Hushmandi K, Zarrabi A, Aref AR, Ashrafizadeh M, Kumar AP, Ertas YN, Ghani S, Aghamiri S. Gene regulation by antisense transcription: A focus on neurological and cancer diseases. Biomed Pharmacother 2021; 145:112265. [PMID: 34749054 DOI: 10.1016/j.biopha.2021.112265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in high-throughput sequencing over the past decades have led to the identification of thousands of non-coding RNAs (ncRNAs), which play a major role in regulating gene expression. One emerging class of ncRNAs is the natural antisense transcripts (NATs), the RNA molecules transcribed from the opposite strand of a protein-coding gene locus. NATs are known to concordantly and discordantly regulate gene expression in both cis and trans manners at the transcriptional, post-transcriptional, translational, and epigenetic levels. Aberrant expression of NATs can therefore cause dysregulation in many biological pathways and has been observed in many genetic diseases. This review outlines the involvements and mechanisms of NATs in the pathogenesis of various diseases, with a special emphasis on neurodegenerative diseases and cancer. We also summarize recent findings on NAT knockdown and/or overexpression experiments and discuss the potential of NATs as promising targets for future gene therapies.
Collapse
Affiliation(s)
- Sajad Najafi
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer 34396, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc, 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Ghani
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Advances with Long Non-Coding RNAs in Alzheimer's Disease as Peripheral Biomarker. Genes (Basel) 2021; 12:genes12081124. [PMID: 34440298 PMCID: PMC8391483 DOI: 10.3390/genes12081124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most compelling needs in the study of Alzheimer’s disease (AD) is the characterization of cognitive decline peripheral biomarkers. In this context, the theme of altered RNA processing has emerged as a contributing factor to AD. In particular, the significant role of long non-coding RNAs (lncRNAs) associated to AD is opening new perspectives in AD research. This class of RNAs may offer numerous starting points for new investigations about pathogenic mechanisms and, in particular, about peripheral biomarkers. Indeed, altered lncRNA signatures are emerging as potential diagnostic biomarkers. In this review, we have collected and fully explored all the presented data about lncRNAs and AD in the peripheral system to offer an overview about this class of non-coding RNAs and their possible role in AD.
Collapse
|
25
|
Aliperti V, Skonieczna J, Cerase A. Long Non-Coding RNA (lncRNA) Roles in Cell Biology, Neurodevelopment and Neurological Disorders. Noncoding RNA 2021; 7:36. [PMID: 34204536 PMCID: PMC8293397 DOI: 10.3390/ncrna7020036] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Development is a complex process regulated both by genetic and epigenetic and environmental clues. Recently, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in several tissues including the brain. Altered expression of lncRNAs has been linked to several neurodegenerative, neurodevelopmental and mental disorders. The identification and characterization of lncRNAs that are deregulated or mutated in neurodevelopmental and mental health diseases are fundamental to understanding the complex transcriptional processes in brain function. Crucially, lncRNAs can be exploited as a novel target for treating neurological disorders. In our review, we first summarize the recent advances in our understanding of lncRNA functions in the context of cell biology and then discussing their association with selected neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Justyna Skonieczna
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Andrea Cerase
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
26
|
Coppedè F. Epigenetic regulation in Alzheimer's disease: is it a potential therapeutic target? Expert Opin Ther Targets 2021; 25:283-298. [PMID: 33843425 DOI: 10.1080/14728222.2021.1916469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. Changes in DNA methylation and post-translational modifications of histone tails are increasingly observed in AD tissues, and likely contribute to disease onset and progression. The reversibility of these epigenetic marks offers the potential for therapeutic interventions.Areas covered: After a concise and updated overview of DNA methylation and post-translational modifications of histone tails in AD tissues, this review provides an overview of the animal and cell culture studies investigating the potential of targeting these modifications to attenuate AD-like features. PubMed was searched for relevant literature between 2003 and 2021.Expert opinion: Methyl donor compounds and drugs acting on histone tail modifications attenuated the AD-like features and improved cognition in several transgenic AD mice; however, there are concerns about safety and tolerability for long-term treatment in humans. The challenges will be to take advantage of recent epigenome-wide investigations to identify the principal targets for future interventions, and to design novel, selective and safer agents. Natural compounds exerting epigenetic properties could represent a promising opportunity to delay disease onset in middle-aged individuals at increased AD risk.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Dolati S, Shakouri SK, Dolatkhah N, Yousefi M, Jadidi-Niaragh F, Sanaie S. The role of exosomal non-coding RNAs in aging-related diseases. Biofactors 2021; 47:292-310. [PMID: 33621363 DOI: 10.1002/biof.1715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Aging is a biological process caused by the accumulation of senescent cells with a permanent proliferative arrest. To the influence of aging on human life expectancy, there is essential for new biomarkers which possibly will assistance in recognizing age-associated pathologies. Exosomes, which are cell-secreted nanovesicles, make available a new biomarker detection and therapeutic approach for the transfer of different molecules with high capacity. Recently, non-coding RNAs (ncRNA) which are contained in exosomes have developed as important molecules regulating the complexity of aging and relevant human diseases. The discovery of ncRNA provided perceptions into an innovative regulatory platform that could interfere with cellular senescence. The non-coding transcriptome includes a different of RNA species, spanning from short ncRNAs (<200 nucleotides) to long ncRNAs, that are >200 bp long. Upgraded evidence displays that targeting ncRNAs possibly will influence senescence pathways. In this article, we will address ncRNAs that participated in age-related and cellular senescence diseases. Growing conception of ncRNAs in the aging process possibly will be responsible for new understandings into the improvement of age-related diseases and elongated life span.
Collapse
Affiliation(s)
- Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021; 90:451-487. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
29
|
Hussen BM, Shoorei H, Mohaqiq M, Dinger ME, Hidayat HJ, Taheri M, Ghafouri-Fard S. The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition. Front Mol Biosci 2021; 8:665199. [PMID: 33842553 PMCID: PMC8033041 DOI: 10.3389/fmolb.2021.665199] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized epithelial cell to undertake numerous biochemical alterations that allow it to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studies in in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In the present paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Marcel E. Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
He W, Chi S, Jin X, Lu J, Zheng W, Yan J, Zhang D. Long Non-Coding RNA BACE1-AS Modulates Isoflurane-Induced Neurotoxicity to Alzheimer's Disease Through Sponging miR-214-3p. Neurochem Res 2020; 45:2324-2335. [PMID: 32681443 DOI: 10.1007/s11064-020-03091-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/27/2023]
Abstract
Isoflurane, an anesthetic, can aggravate the progression of Alzheimer's disease (AD). Long non-coding RNA β-secretase 1 (BACE1)-antisense transcript (BACE1-AS) and miR-214-3p are related to AD progression. Nevertheless, it is unclear whether BACE1-AS is involved in the development of isoflurane-mediated AD via miR-214-3p. Amyloid beta peptide (Aβ) was employed to construct the AD cell model. The expression of BACE1-AS and miR-214-3p in the plasma of AD patients and SK-N-SH and SK-N-AS cells treated with Aβ and isoflurane was assessed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). The proliferation and apoptosis of Aβ-treated SK-N-SH and SK-N-AS cells were determined via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) or flow cytometry assays, respectively. Protein levels of B cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), CyclinD1, microtubule-associated protein A1/1B-light chain3 (LC3 I/LC3 II), p62 and Beclin1 were detected via western blot analysis. The relationship between BACE1-AS and miR-214-3p was verified by dual-luciferase reporter assay. We found that BACE1-AS was upregulated and miR-214-3p was downregulated in the plasma of AD patients and SK-N-SH and SK-N-AS cells treated with Aβ and isoflurane. Both BACE1-AS depletion and miR-214-3p augmentation restored the suppression of proliferation and the facilitation of apoptosis and autophagy of Aβ-treated SK-N-SH and SK-N-AS cells induced by isoflurane. Importantly, BACE1-AS acted as a sponge for miR-214-3p. Additionally, miR-214-3p silencing reversed the influence of BACE1-AS knockdown on isoflurane-mediated proliferation, apoptosis and autophagy in Aβ-induced SK-N-SH and SK-N-AS cells. In conclusion, BACE1-AS aggravated isoflurane-induced neurotoxicity to AD via sponging miR-214-3p.
Collapse
Affiliation(s)
- Wei He
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Songyuan Chi
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Xing Jin
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Jieyu Lu
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Wei Zheng
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Jie Yan
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Duo Zhang
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China.
| |
Collapse
|
31
|
Wang D, Wang P, Bian X, Xu S, Zhou Q, Zhang Y, Ding M, Han M, Huang L, Bi J, Jia Y, Xie Z. Elevated plasma levels of exosomal BACE1‑AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer's disease. Mol Med Rep 2020; 22:227-238. [PMID: 32377715 PMCID: PMC7248487 DOI: 10.3892/mmr.2020.11118] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) and exosomes are involved in the pathological process of Alzheimer's disease (AD), the pathological changes of which are usually first observed in the entorhinal cortex and hippocampus. The aim of the present study was to determine whether the measurement of plasma exosomal lncRNA combined with image data of the entorhinal cortex and hippocampus could be used as a biomarker of AD. A total of 72 patients with AD and 62 controls were recruited, and the expression levels of several lncRNAs were assessed. Of the recruited participants, 22 patients and 26 controls received brain 3D-BRAVO sequence magnetic resonance imaging (MRI) scans, which were analyzed using an automated analysis tool. The plasma exosomal β-site amyloid precursor protein cleaving enzyme-1-antisense transcript (BACE1-AS) levels in patients with AD were significantly higher compared with the controls (P<0.005). Receiver operating characteristic curve analysis revealed that the area under the curve (AUC) was 0.761 for BACE1-AS, the sensitivity was 87.5%, and the specificity was 61.3%. Analysis of MRI images indicated that the right entorhinal cortex volume (P=0.015) and thickness (P=0.022) in patients with AD were significantly smaller. The AUC was 0.688 for the right entorhinal cortex volume, with a sensitivity of 59.1%, and the specificity was 84.6%. The AUC was 0.689 for right entorhinal cortex thickness, with a sensitivity of 80.8%, and the specificity was 59.1%. A series-parallel test which integrated the BACE1-AS with the right entorhinal cortex volume and thickness, raised the specificity and sensitivity to 96.15 and 90.91%, respectively. A logistic regression model demonstrated that combination of the 3 indices provided improved sensitivity and specificity simultaneously, particularly when adjusting for age and sex (AUC, 0.819; sensitivity, 81%; specificity, 73.1%). The results of the present study demonstrated that detection of plasma exosomal BACE1-AS levels combined with the volume and thickness of the right entorhinal cortex may be used as a novel biomarker of AD.
Collapse
Affiliation(s)
- Dewei Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xianli Bian
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qingbo Zhou
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Zhang
- Center of Evidence‑Based Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Mao Ding
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Min Han
- Department of Geriatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Huang
- Department of Radiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuxiu Jia
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhaohong Xie
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
32
|
Ge Y, Song X, Liu J, Liu C, Xu C. The Combined Therapy of Berberine Treatment with lncRNA BACE1-AS Depletion Attenuates Aβ 25-35 Induced Neuronal Injury Through Regulating the Expression of miR-132-3p in Neuronal Cells. Neurochem Res 2020; 45:741-751. [PMID: 31898085 DOI: 10.1007/s11064-019-02947-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Accumulating articles reported that berberine (Ber) played a neuroprotective role in Alzheimer's disease (AD). Long noncoding RNAs (lncRNAs) have been identified as biomarkers and therapeutic targets of AD. However, the precise mechanism by which lncRNA β-amyloid cleaving enzyme 1 antisense RNA (BACE1-AS)regulates the progression of AD remains largely unknown. HPN and SK-N-SH cells treated with amyloid β 25-35 (Aβ25-35) were regarded as AD model in vitro. Cell survival rate was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Lactate dehydrogenase (LDH) cytotoxicity assay was conducted to detect the cytotoxicity of neuronal cells. Flow cytometry was performed to determine the intracellular concentration of Ca2+, reactive oxygen species (ROS) and apoptosis of neuronal cells. Western blot assay was carried out to detect the apoptosis-related proteins of neuronal cells. The abundance of lncRNA BACE1-AS and miR-132-3p was measured by quantitative real time polymerase chain reaction (qRT-PCR). The binding sites between miR-132-3p and BACE1-AS were predicted by Starbase, and the combination was confirmed by dual-luciferase reporter assay. We found that Ber alleviated Aβ25-35 induced neuronal injury in AD model, especially in high concentration Ber group. The enrichment of BACE1-AS was positively regulated by Aβ25-35 and was inversely modulated by Ber in neuronal cells. The interference of BACE1-AS alleviated the neuronal damage of AD model. miR-132-3p was a direct target of lncRNA BACE1-AS in HEK293T cells, and it was negatively regulated by BACE1-AS in neuronal cells. BACE1-AS accumulation reversed the protective effect of miR-132-3p overexpression on AD model. Ber treatment and BACE1-AS intervention recovered the viability of AD model. Ber up-regulated the level of miR-132-3p via BACE1-AS in SK-N-SH and HPN neuronal cells. in conclucsion, Ber protected neuronal cells against Aβ25-35 at least partly through BACE1-AS/miR-132-3p axis. The combined therapy of Ber treatment with BACE1-AS depletion might provide new insight into AD treatment.
Collapse
Affiliation(s)
- Yunli Ge
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 451450, China.
| | - Xiaolin Song
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 451450, China
| | - Jianfeng Liu
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 451450, China
| | - Chun Liu
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 451450, China
| | - Changshui Xu
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 451450, China.
| |
Collapse
|