1
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
2
|
Williams AM, Carter OG, Forsythe ES, Mendoza HK, Sloan DB. Gene duplication and rate variation in the evolution of plastid ACCase and Clp genes in angiosperms. Mol Phylogenet Evol 2022; 168:107395. [PMID: 35033670 PMCID: PMC9673162 DOI: 10.1016/j.ympev.2022.107395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
While the chloroplast (plastid) is known for its role in photosynthesis, it is also involved in many other metabolic pathways essential for plant survival. As such, plastids contain an extensive suite of enzymes required for non-photosynthetic processes. The evolution of the associated genes has been especially dynamic in flowering plants (angiosperms), including examples of gene duplication and extensive rate variation. We examined the role of ongoing gene duplication in two key plastid enzymes, the acetyl-CoA carboxylase (ACCase) and the caseinolytic protease (Clp), responsible for fatty acid biosynthesis and protein turnover, respectively. In plants, there are two ACCase complexes-a homomeric version present in the cytosol and a heteromeric version present in the plastid. Duplications of the nuclear-encoded homomeric ACCase gene and retargeting of one resultant protein to the plastid have been previously reported in multiple species. We find that these retargeted homomeric ACCase proteins exhibit elevated rates of sequence evolution, consistent with neofunctionalization and/or relaxation of selection. The plastid Clp complex catalytic core is composed of nine paralogous proteins that arose via ancient gene duplication in the cyanobacterial/plastid lineage. We show that further gene duplication occurred more recently in the nuclear-encoded core subunits of this complex, yielding additional paralogs in many species of angiosperms. Moreover, in six of eight cases, subunits that have undergone recent duplication display increased rates of sequence evolution relative to those that have remained single copy. We also compared substitution patterns between pairs of Clp core paralogs to gain insight into post-duplication evolutionary routes. These results show that gene duplication and rate variation continue to shape the plastid proteome.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States; Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States.
| | - Olivia G Carter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Hannah K Mendoza
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
3
|
Colombo CV, Rosano GL, Mogk A, Ceccarelli EA. A Gatekeeper Residue of ClpS1 from Arabidopsis thaliana Chloroplasts Determines its Affinity Towards Substrates of the Bacterial N-End Rule. PLANT & CELL PHYSIOLOGY 2018; 59:624-636. [PMID: 29401302 DOI: 10.1093/pcp/pcy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Proteins that are to be eliminated must be proficiently recognized by proteolytic systems so that inadvertent elimination of useful proteins is avoided. One mechanism to ensure proper recognition is the presence of N-terminal degradation signals (N-degrons) that are targeted by adaptor proteins (N-recognins). The members of the caseinolytic protease S (ClpS) family of N-recognins identify targets bearing an N-terminal phenylalanine, tyrosine, tryptophan or leucine residue, and then present them to a protease system. This process is known as the 'bacterial N-end rule'. The presence of a ClpS protein in Arabidopsis thaliana chloroplasts (AtClpS1) prompted the hypothesis that the bacterial N-end rule exists in this organelle. However, the specificity of AtClpS1 is unknown. Here we show that AtClpS1 has the ability to recognize bacterial N-degrons, albeit with low affinity. Recognition was assessed by the effect of purified AtClpS1 on the degradation of fluorescent variants bearing bacterial N-degrons. In many bacterial ClpS proteins, a methionine residue acts as a 'gatekeeper' residue, fine-tuning the specificity of the N-recognin. In plants, the amino acid at that position is an arginine. Replacement of this arginine for methionine in recombinant AtClpS1 allows for high-affinity binding to classical N-degrons of the bacterial N-end rule, suggesting that the arginine residue in the substrate-binding site may also act as a gatekeeper for plant substrates.
Collapse
Affiliation(s)
- Clara V Colombo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, INF 282, D-69120 Heidelberg, Germany
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
4
|
Nishimura K, Kato Y, Sakamoto W. Essentials of Proteolytic Machineries in Chloroplasts. MOLECULAR PLANT 2017; 10:4-19. [PMID: 27585878 DOI: 10.1016/j.molp.2016.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic processes, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degradation, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remodeling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation machineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
5
|
Mishra RC, Grover A. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:69-78. [PMID: 27457985 DOI: 10.1016/j.plantsci.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Caseinolytic proteases (Clps) perform the important role of removing protein aggregates from cells, which can otherwise prove to be highly toxic. ClpD system is a two-component protease complex composed of a regulatory ATPase module ClpD and a proteolytic component ClpP. Under desiccation stress condition, rice ClpD1 (OsClpD1) gene encoding for the regulatory subunit, was represented by four variant transcripts differing mainly in the expanse of their N-terminal amino acids. These transcripts were expressed in a differential manner in response to salt, mannitol and polyethylene glycol stresses in rice. Purified OsClpD1.3 protein exhibited intrinsic chaperone activity, shown using citrate synthase as substrate. Arabidopsis (Col-0) plants over-expressing OsClpD1.3 open reading frame downstream to CaMV35S promoter (ClpD1.3 plants) showed higher tolerance to salt and desiccation stresses as compared to wild type plants. ClpD1.3 seedlings also showed enhanced growth during the early stages of seed germination under unstressed, control conditions. The free proline levels and starch breakdown activities were higher in the ClpD1.3 seedlings as compared to the wild type Arabidopsis seedlings. It thus emerges that increasing the potential of ClpD1 chaperoning activity may be of advantage in protection against abiotic stresses.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
6
|
Fu Y, Poli M, Sablok G, Wang B, Liang Y, La Porta N, Velikova V, Loreto F, Li M, Varotto C. Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:54. [PMID: 26958077 PMCID: PMC4782572 DOI: 10.1186/s13068-016-0471-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/22/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Arundo donax L. (Poaceae) is considered one of the most promising energy crops in the Mediterranean region because of its high biomass yield and low input requirements, but to date no information on its transcriptional responses to water stress is available. RESULTS We obtained by Illumina-based RNA-seq the whole root and shoot transcriptomes of young A. donax plants subjected to osmotic/water stress with 10 and 20 % polyethylene glycol (PEG; 3 biological replicates/organ/condition corresponding to 18 RNA-Seq libraries), and identified a total of 3034 differentially expressed genes. Blast-based mining of stress-related genes indicated the higher responsivity of roots compared to shoots at the early stages of water stress especially under the milder PEG treatment, with a majority of genes responsive to salt, oxidative, and dehydration stress. Analysis of gene ontology terms underlined the qualitatively different responses between root and shoot tissues. Among the most significantly enriched metabolic pathways identified using a Fisher's exact test with FDR correction, a crucial role was played in both shoots and roots by genes involved in the signaling cascade of abscisic acid. We further identified relatively large organ-specific differences in the patterns of drought-related transcription factor AP2-EREBP, AUX/IAA, MYB, bZIP, C2H2, and GRAS families, which may underlie the transcriptional reprogramming differences between organs. Through comparative analyses with major Poaceae species based on Blast, we finally identified a set of 53 orthologs that can be considered as a core of evolutionary conserved genes important to mediate water stress responses in the family. CONCLUSIONS This study provides the first characterization of A. donax transcriptome in response to water stress, thus shedding novel light at the molecular level on the mechanisms of stress response and adaptation in this emerging bioenergy species. The inventory of early-responsive genes to water stress identified could constitute useful markers of the physiological status of A. donax and be a basis for the improvement of its productivity under water limitation. The full water-stressed A. donax transcriptome is available for Blast-based homology searches through a dedicated web server (http://ecogenomics.fmach.it/arundo/).
Collapse
Affiliation(s)
- Yuan Fu
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Michele Poli
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Dipartimento di Scienze Agrarie, Università di Bologna, Bologna, Italy
| | - Gaurav Sablok
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Bo Wang
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Centro di Biologia Integrata (CIBIO), University of Trento, Trento, Italy
| | - Yanchun Liang
- />College of Computer Science and Technology, Jilin University, Changchun, China
| | - Nicola La Porta
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />MOUNTFOR Project Centre, European Forest Institute, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Violeta Velikova
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Francesco Loreto
- />The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Rome, Italy
| | - Mingai Li
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Claudio Varotto
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| |
Collapse
|
7
|
Kim J, Kimber MS, Nishimura K, Friso G, Schultz L, Ponnala L, van Wijk KJ. Structures, Functions, and Interactions of ClpT1 and ClpT2 in the Clp Protease System of Arabidopsis Chloroplasts. THE PLANT CELL 2015; 27:1477-96. [PMID: 25921872 PMCID: PMC4456643 DOI: 10.1105/tpc.15.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 04/08/2015] [Indexed: 05/18/2023]
Abstract
Plastid ClpT1 and ClpT2 are plant-specific proteins that associate with the ClpPR protease. However, their physiological significance and structures are not understood. Arabidopsis thaliana loss-of-function single clpt1 and clpt2 mutants showed no visible phenotypes, whereas clpt1 clpt2 double mutants showed delayed development, reduced plant growth, and virescent, serrated leaves but were viable and produced seed. The clpt1 and clpt1 clpt2 mutants showed partial destabilization of the ClpPR complex, whereas clpt2 null mutants showed only marginal destabilization. Comparative proteomics of clpt1 clpt2 plants showed a proteostasis phenotype similar to viable mutants in ClpPR core subunits, indicating reduced Clp protease capacity. In vivo and in vitro assays showed that ClpT1 and ClpT2 can independently interact with the single ClpP ring and ClpPR core, but not with the single ClpR ring. We determined ClpT1 and ClpT2 structures (2.4- and 2.0-Å resolution) and detailed the similarities to the N-domains of bacterial ClpA/C chaperones. The ClpT structures suggested a conserved MYFF motif for interaction with the ClpPR core near the interface between the P- and R-rings. In vivo complementation showed that ClpT function and ClpPR core stabilization require the MYFF motif. Several models are presented that may explain how ClpT1,2 contribute to ClpPR protease activity.
Collapse
Affiliation(s)
- Jitae Kim
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kenji Nishimura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lance Schultz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
8
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|