1
|
Albrecht T, Oberforster M, Hartl L, Mohler V. Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat. Genes (Basel) 2024; 15:794. [PMID: 38927730 PMCID: PMC11202678 DOI: 10.3390/genes15060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits are used to assess PHS resistance, i.e., sprouting scores, germination index, and falling number (FN), but the variation of these traits is highly dependent on the weather conditions during field trials. Here, we present a method to assess falling number stability (FNS) employing an after-ripening period and the wetting of the kernels to improve trait variation and thus trait heritability. Different genome-based prediction scenarios within and across two subsequent seasons based on overall 400 breeding lines were applied to assess the predictive abilities of the different traits. Based on FNS, the genome-based prediction of the breeding values of wheat breeding material showed higher correlations across seasons (r=0.505-0.548) compared to those obtained for other traits for PHS assessment (r=0.216-0.501). By weighting PHS-associated quantitative trait loci (QTL) in the prediction model, the average predictive abilities for FNS increased from 0.585 to 0.648 within the season 2014/2015 and from 0.649 to 0.714 within the season 2015/2016. We found that markers in the Phs-A1 region on chromosome 4A had the highest effect on the predictive abilities for FNS, confirming the influence of this QTL in wheat breeding material, whereas the dwarfing genes Rht-B1 and Rht-D1 and the wheat-rye translocated chromosome T1RS.1BL exhibited effects, which are well-known, on FN per se exclusively.
Collapse
Affiliation(s)
- Theresa Albrecht
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354 Freising, Germany; (T.A.); (L.H.)
| | - Michael Oberforster
- Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production, Spargelfeldstr. 191, 1220 Vienna, Austria
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354 Freising, Germany; (T.A.); (L.H.)
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354 Freising, Germany; (T.A.); (L.H.)
| |
Collapse
|
2
|
Lang J, Jiang H, Cheng M, Wang M, Gu J, Dong H, Li M, Guo X, Chen Q, Wang J. Variation of TaMyb10 and their function on grain color and pre-harvest sprouting resistance of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1388-1399. [PMID: 38407913 DOI: 10.1111/tpj.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Pre-harvest sprouting (PHS) is a significant threat to global food security due to its association with losses in both yield and quality. Among the genes involved in PHS resistance in wheat, PHS-3D (TaMyb10-D) plays a crucial role. Here, we characterized the sequence variations of TaMyb10 genes in 416 bread wheat and 302 Aegilops tauschii accessions. Within TaMyb10-A sequences, we identified a deletion ranging from 214 to 305 bp in the signal and amino acid coding region, present in 61.3% of the accessions. Similarly, 79.3% of the TaMyb10-B sequences within the third exon region exhibited a 19 bp deletion. Additionally, 40.8% of the accessions lacked the 2.4 Mb fragment (in/del mutations) on Chr3D, where TaMyb10-D/PHS-3D was located. Interestingly, the geographical distribution of accessions showed little correlation with the divergence of TaMyb10. TaMyb10-A-IIIDele, TaMyb10-B-IVDele, and TaMyb10-D-VDele genotypes were prevalent in wheat populations across continents. Despite their structural variations, the five distinct protein types exhibited comparable ability to bind the promoters of downstream genes in the flavonoid and ABA pathways, such as CHS, DFR, and NCED. Furthermore, the combination of TaMyb10 homologs was significantly associated with grain color and germination percentages. Accessions exclusively harboring TaMyb10-D displayed red seed color and reduced germination percentages, indicating the predominant role of TaMyb10-D compared to TaMyb10-A and TaMyb10-B. This comprehensive investigation enhances our understanding of the structural variations and functional divergence of TaMyb10, providing valuable insights and resources for improving PHS resistance in wheat.
Collapse
Affiliation(s)
- Jing Lang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huayu Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - XiaoJiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
3
|
Afonnikova SD, Kiseleva AA, Fedyaeva AV, Komyshev EG, Koval VS, Afonnikov DA, Salina EA. Identification of Novel Loci Precisely Modulating Pre-Harvest Sprouting Resistance and Red Color Components of the Seed Coat in T. aestivum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1309. [PMID: 38794380 PMCID: PMC11126043 DOI: 10.3390/plants13101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The association between pre-harvest sprouting (PHS) and seed coat color has long been recognized. Red-grained wheats generally exhibit greater PHS resistance compared to white-grained wheat, although variability in PHS resistance exists within red-grained varieties. Here, we conducted a genome-wide association study on a panel consisting of red-grained wheat varieties, aimed at uncovering genes that modulate PHS resistance and red color components of seed coat using digital image processing. Twelve loci associated with PHS traits were identified, nine of which were described for the first time. Genetic loci marked by SNPs AX-95172164 (chromosome 1B) and AX-158544327 (chromosome 7D) explained approximately 25% of germination index variance, highlighting their value for breeding PHS-resistant varieties. The most promising candidate gene for PHS resistance was TraesCS6B02G147900, encoding a protein involved in aleurone layer morphogenesis. Twenty-six SNPs were significantly associated with grain color, independently of the known Tamyb10 gene. Most of them were related to multiple color characteristics. Prioritization of genes within the revealed loci identified TraesCS1D03G0758600 and TraesCS7B03G1296800, involved in the regulation of pigment biosynthesis and in controlling pigment accumulation. In conclusion, our study identifies new loci associated with grain color and germination index, providing insights into the genetic mechanisms underlying these traits.
Collapse
Affiliation(s)
- Svetlana D. Afonnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Antonina A. Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna V. Fedyaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Evgenii G. Komyshev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vasily S. Koval
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Ocaña-Gallegos C, Liang M, McGinty E, Zhang Z, Murphy KM, Hauvermale AL. Preharvest Sprouting in Quinoa: A New Screening Method Adapted to Panicles and GWAS Components. PLANTS (BASEL, SWITZERLAND) 2024; 13:1297. [PMID: 38794368 PMCID: PMC11124833 DOI: 10.3390/plants13101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The introduction of quinoa into new growing regions and environments is of interest to farmers, consumers, and stakeholders around the world. Many plant breeding programs have already started to adapt quinoa to the environmental and agronomic conditions of their local fields. Formal quinoa breeding efforts in Washington State started in 2010, led by Professor Kevin Murphy out of Washington State University. Preharvest sprouting appeared as the primary obstacle to increased production in the coastal regions of the Pacific Northwest. Preharvest sprouting (PHS) is the undesirable sprouting of seeds that occurs before harvest, is triggered by rain or humid conditions, and is responsible for yield losses and lower nutrition in cereal grains. PHS has been extensively studied in wheat, barley, and rice, but there are limited reports for quinoa, partly because it has only recently emerged as a problem. This study aimed to better understand PHS in quinoa by adapting a PHS screening method commonly used in cereals. This involved carrying out panicle-wetting tests and developing a scoring scale specific for panicles to quantify sprouting. Assessment of the trait was performed in a diversity panel (N = 336), and the resulting phenotypes were used to create PHS tolerance rankings and undertake a GWAS analysis (n = 279). Our findings indicate that PHS occurred at varying degrees across a subset of the quinoa germplasm tested and that it is possible to access PHS tolerance from natural sources. Ultimately, these genotypes can be used as parental lines in future breeding programs aiming to incorporate tolerance to PHS.
Collapse
Affiliation(s)
| | | | | | | | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| |
Collapse
|
5
|
Li Z, Luo Q, Gan Y, Li X, Ou X, Deng Y, Fu S, Tang Z, Tan F, Luo P, Ren T. Identification and validation of major and stable quantitative trait locus for falling number in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:83. [PMID: 38491113 DOI: 10.1007/s00122-024-04588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
KEY MESSAGE A major and stable QTL, QFn.sau-1B.2, which can explain 13.6% of the PVE in FN and has a positive effect on resistance in SGR, was mapped and validated. The falling number (FN) is considered one of the most important quality traits of wheat grain and is the most important quality evaluation index for wheat trade worldwide. The quantitative trait loci (QTLs) for FN were mapped in three years of experiments. 23, 30, and 58 QTLs were identified using the ICIM-BIP, ICIM-MET, and ICIM-EPI methods, respectively. Among them, seven QTLs were considered stable. QFn.sau-1B.2, which was mapped to the 1BL chromosome, can explain 13.6% of the phenotypic variation on average and is considered a major and stable QTL for FN. This QTL was mapped in a 1 cM interval and is flanked by the markers AX-110409346 and AX-108743901. Epistatic analysis indicated that QFN.sau-1B.2 has a strong influence on FN through both additive and epistatic effects. The Kompetitive Allele-Specific PCR marker KASP-AX-108743901, which is closely linked to QFn.sau-1B.2, was designed. The genetic effect of QFn.sau-1B.2 on FN was successfully confirmed in Chuannong18 × T1208 and CN17 × CN11 populations. Moreover, the results of the additive effects of favorable alleles for FN showed that the QTLs for FN had significant effects not only on FN but also on the resistance to spike germination. Within the interval of QFn.sau-1B.2, 147 high-confidence genes were found. According to the gene annotation and the transcriptome data, four genes might be associated with FN. QFn.sau-1B.2 may provide a new resource for the high-quality breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qinyi Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yujie Gan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xinli Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Ou
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yawen Deng
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Feiquan Tan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peigao Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Dallinger HG, Löschenberger F, Azrak N, Ametz C, Michel S, Bürstmayr H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. THE PLANT GENOME 2024; 17:e20301. [PMID: 36851839 DOI: 10.1002/tpg2.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.
Collapse
Affiliation(s)
- Hermann G Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | | | - Naim Azrak
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Hermann Bürstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| |
Collapse
|
7
|
Yang J, Wang J. Genome-Wide Association Study of Preharvest Sprouting in Wheat. Methods Mol Biol 2024; 2830:121-129. [PMID: 38977573 DOI: 10.1007/978-1-0716-3965-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Patwa N, Penning BW. Genetics of a diverse soft winter wheat population for pre-harvest sprouting, agronomic, and flour quality traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1137808. [PMID: 37346135 PMCID: PMC10280069 DOI: 10.3389/fpls.2023.1137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Soft winter wheat has been adapted to the north-central, north-western, and south-central United States over hundreds of years for optimal yield, height, heading date, and pathogen and pest resistance. Environmental factors like weather affect abiotic traits such as pre-harvest sprouting resistance. However, pre-harvest sprouting has rarely been a target for breeding. Owing to changing weather patterns from climate change, pre-harvest sprouting resistance is needed to prevent significant crop losses not only in the United States, but worldwide. Twenty-two traits including age of breeding line as well as agronomic, flour quality, and pre-harvest sprouting traits were studied in a population of 188 lines representing genetic diversity over 200 years of soft winter wheat breeding. Some traits were correlated with one another by principal components analysis and Pearson's correlations. A genome-wide association study using 1,978 markers uncovered a total of 102 regions encompassing 226 quantitative trait nucleotides. Twenty-six regions overlapped multiple traits with common significant markers. Many of these traits were also found to be correlated by Pearson's correlation and principal components analyses. Most pre-harvest sprouting regions were not co-located with agronomic traits and thus useful for crop improvement against climate change without affecting crop performance. Six different genome-wide association statistical models (GLM, MLM, MLMM, FarmCPU, BLINK, and SUPER) were utilized to search for reasonable models to analyze soft winter wheat populations with increased markers and/or breeding lines going forward. Some flour quality and agronomic traits seem to have been selected over time, but not pre-harvest sprouting. It appears possible to select for pre-harvest sprouting resistance without impacting flour quality or the agronomic value of soft winter wheat.
Collapse
|
9
|
Kou C, Peng C, Dong H, Hu L, Xu W. Mapping quantitative trait loci and developing their KASP markers for pre-harvest sprouting resistance of Henan wheat varieties in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1118777. [PMID: 36875573 PMCID: PMC9976778 DOI: 10.3389/fpls.2023.1118777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Pre-harvest Sprouting (PHS) seriously affects wheat quality and yield. However, to date there have been limited reports. It is of great urgency to breed resistance varieties via quantitative trait nucleotides (QTNs) or genes for PHS resistance in white-grained wheat. METHODS 629 Chinese wheat varieties, including 373 local wheat varieties from 70 years ago and 256 improved wheat varieties were phenotyped for spike sprouting (SS) in two environments and genotyped by wheat 660K microarray. These phenotypes were used to associate with 314,548 SNP markers for identifying QTNs for PHS resistance using several multi-locus genome-wide association study (GWAS) methods. Their candidate genes were verified by RNA-seq, and the validated candidate genes were further exploited in wheat breeding. RESULTS As a result, variation coefficients of 50% and 47% for PHS in 629 wheat varieties, respectively, in 2020-2021 and 2021-2022 indicated large phenotypic variation, in particular, 38 white grain varieties appeared at least medium resistance, such as Baipimai, Fengchan 3, and Jimai 20. In GWAS, 22 significant QTNs, with the sizes of 0.06% ~ 38.11%, for PHS resistance were stably identified by multiple multi-locus methods in two environments, e.g., AX-95124645 (chr3D:571.35Mb), with the sizes of 36.390% and 45.850% in 2020-2021 and 2021-2022, respectively, was detected by several multi-locus methods in two environments. As compared with previous studies, the AX-95124645 was used to develop Kompetitive Allele-Specific PCR marker QSS.TAF9-3D (chr3D:569.17Mb~573.55Mb) for the first time, especially, it is available in white-grain wheat varieties. Around this locus, nine genes were significantly differentially expressed, and two of them (TraesCS3D01G466100 and TraesCS3D01G468500) were found by GO annotation to be related to PHS resistance and determined as candidate genes. DISCUSSION The QTN and two new candidate genes related to PHS resistance were identified in this study. The QTN can be used to effectively identify the PHS resistance materials, especially, all the white-grained varieties with QSS.TAF9-3D-TT haplotype are resistant to spike sprouting. Thus, this study provides candidate genes, materials, and methodological basis for breeding wheat PHS resistance in the future.
Collapse
Affiliation(s)
- Cheng Kou
- College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - ChaoJun Peng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - HaiBin Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - Lin Hu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - WeiGang Xu
- College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Li Z, Chen Y, Ou X, Wang M, Wang N, Li W, Deng Y, Diao Y, Sun Z, Luo Q, Li X, Zhao L, Yan T, Peng W, Jiang Q, Fang Y, Ren Z, Tan F, Luo P, Ren T. Identification of a stable major-effect quantitative trait locus for pre-harvest sprouting in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4183-4195. [PMID: 36068440 DOI: 10.1007/s00122-022-04211-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
A major and stable QTL cQSGR.sau.3D, which can explain 33.25% of the phenotypic variation in SGR, was mapped and validated, and cQSGR.sau.3D was found to be independent of GI. In this study, a recombinant inbred line (RIL) population containing 304 lines derived from the cross of Chuan-nong17 (CN17) and Chuan-nong11 (CN11) was genotyped using the Wheat55K single-nucleotide polymorphism array. A high-density genetic map consisting of 8329 markers spanning 4131.54 cM and distributed across 21 wheat chromosomes was constructed. QTLs for whole spike germination rate (SGR) were identified in multiple years. Six and fourteen QTLs were identified using the Inclusive Composite Interval Mapping-Biparental Populations and Multi-Environment Trial methods, respectively. A total of 106 digenic epistatic QTLs were also detected in this study. One of the additive QTLs, cQSGR.sau.3D, which was mapped in the region from 3.5 to 4.5 cM from linkage group 3D-2 on chromosome 3D, can explain 33.25% of the phenotypic variation in SGR and be considered a major and stable QTL for SGR. This QTL was independent of the seeds' germination traits, such as germination index. One Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110772653, which is tightly linked to cQSGR.sau.3D, was developed. The genetic effect of cQSGR.sau.3D on SGR in the RIL and natural populations was successfully confirmed. Furthermore, within the interval in which cQSGR.sau.3D is located in Chinese Spring reference genomes, thirty-seven genes were found. cQSGR.sau.3D may provide new resources for pre-harvest sprouting resistance breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yongyan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Ou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mengning Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Nanxin Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yawen Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yixin Diao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zixin Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qinyi Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xinli Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Liqi Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wanhua Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qing Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zhenglong Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Feiquan Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peigao Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Rabieyan E, Bihamta MR, Moghaddam ME, Mohammadi V, Alipour H. Genome-wide association mapping and genomic prediction for pre‑harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat. BMC PLANT BIOLOGY 2022; 22:300. [PMID: 35715737 PMCID: PMC9204952 DOI: 10.1186/s12870-022-03628-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed to estimate prediction accuracies in wheat genomic selection. RESULTS Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces (427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (- log10 P > 3), respectively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection. CONCLUSIONS Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection.Our observations uncovered key MTAs related to seed color, α-Amy activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | | | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Dhariwal R, Hiebert CW, Sorrells ME, Spaner D, Graf RJ, Singh J, Randhawa HS. Mapping pre-harvest sprouting resistance loci in AAC Innova × AAC Tenacious spring wheat population. BMC Genomics 2021; 22:900. [PMID: 34911435 PMCID: PMC8675488 DOI: 10.1186/s12864-021-08209-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. Results Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. Conclusions Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08209-6.
Collapse
Affiliation(s)
- Raman Dhariwal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Mark E Sorrells
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, 240 Emerson Hall, Ithaca, NY, 14853, USA
| | - Dean Spaner
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Robert J Graf
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Harpinder S Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
13
|
Seed Dormancy and Pre-Harvest Sprouting in Rice-An Updated Overview. Int J Mol Sci 2021; 22:ijms222111804. [PMID: 34769234 PMCID: PMC8583970 DOI: 10.3390/ijms222111804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people’s ability to adapt to risks as the world’s population grows and natural disasters become more frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic changes should be monitored, which can be modified by high-throughput metabolic engineering techniques. The integration of these data allows the creation of tailored breeding lines suitable for various demands and regions, and it is crucial for increasing the crop yields and economic benefits. In this review, we have provided an overview of seed dormancy and its regulation, the major causes of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in cereals with special reference to rice using genomics and transcriptomic approaches.
Collapse
|
14
|
Li L, Zhang Y, Zhang Y, Li M, Xu D, Tian X, Song J, Luo X, Xie L, Wang D, He Z, Xia X, Zhang Y, Cao S. Genome-Wide Linkage Mapping for Preharvest Sprouting Resistance in Wheat Using 15K Single-Nucleotide Polymorphism Arrays. FRONTIERS IN PLANT SCIENCE 2021; 12:749206. [PMID: 34721477 PMCID: PMC8551680 DOI: 10.3389/fpls.2021.749206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 05/13/2023]
Abstract
Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification of genetic loci for PHS resistance will facilitate breeding sprouting-resistant wheat cultivars. In this study, we constructed a genetic map comprising 1,702 non-redundant markers in a recombinant inbred line (RIL) population derived from cross Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism (SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major indicator of PHS, were identified, explaining 4.6-18.5% of the phenotypic variances. Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL. No epistatic effects were detected among the QTL, and combined resistance alleles significantly increased PHS resistance. Sequencing and linkage mapping showed that Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were probably new QTL for PHS. We further developed cost-effective, high-throughput kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2 and 16.5% cultivars, respectively, suggesting that the former might be subjected to positive selection in wheat breeding. The findings provide not only genetic resources for PHS resistance but also breeding tools for marker-assisted selection.
Collapse
Affiliation(s)
- Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjun Zhang
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
Colasuonno P, Marcotuli I, Gadaleta A, Soriano JM. From Genetic Maps to QTL Cloning: An Overview for Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:315. [PMID: 33562160 PMCID: PMC7914919 DOI: 10.3390/plants10020315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies. This allows for high-density genetic maps to be developed for localizing candidate loci within a few Kb in a complex genome, such as durum wheat. Here, we review the identified QTL, fine mapping, and cloning of QTL or candidate genes involved in the main traits regarding the quality and biotic and abiotic stresses of durum wheat. The current knowledge on the used molecular markers, sequence data, and how they changed the development of genetic maps and the characterization of QTL is summarized. A deeper understanding of the trait architecture useful in accelerating durum wheat breeding programs is envisioned.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| |
Collapse
|
17
|
Liton MMUA, McCartney CA, Hiebert CW, Kumar S, Jordan MC, Ayele BT. Identification of loci for pre-harvest sprouting resistance in the highly dormant spring wheat RL4137. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:113-124. [PMID: 33001261 DOI: 10.1007/s00122-020-03685-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/11/2020] [Indexed: 05/06/2023]
Abstract
Combination of RL4137 alleles at three QTLs on chromosomes 4A, 6B and 6D, and 'Roblin' allele at a novel QTL on chromosome 1D increases pre-harvest sprouting resistance in 'Roblin'/RL4137 doubled haploid population. Pre-harvest sprouting (PHS) significantly reduces wheat grain yield and quality. Therefore, identifying quantitative trait loci (QTL) for PHS resistance is key to facilitate marker-assisted breeding. To this end, we studied PHS in a population of 330 doubled haploid (DH) lines derived from 'Roblin'/RL4137. The parental and DH lines were examined for their PHS phenotype based on speed of germination index in five environments and genotyped using the wheat Infinium 90 K SNP array. A total of five QTLs were detected on linkage groups 1D, 4A.2, 6B.1, 6D and 7A over the five environments. The QTL QPhs.umb-4A on linkage group 4A.2 was the most consistent across all environments and explained 40-50% of phenotypic variation. The QTL on 1D is a novel QTL and explained 1.99-2.33% of phenotypic variation. The QTLs on 6B.1 and 6D each explained 3.09-4.33% and 1.62-2.45% of phenotypic variation, respectively. A combination of four stable QTLs on linkage groups 1D, 4A.2, 6B.1 and 6D greatly increased PHS resistance. Allelic effects for the QTLs QPhs.umb-4A, QPhs.umb-6B and QPhs.umb-6D were contributed by RL4137, whereas 'Roblin' contributed the resistant allele for QPhs.umb-1D. QPhs.umb-4A was required for strong dormancy in the 'Roblin'/RL4137 DH population, and the presence of QTLs QPhs.umb-1D, QPhs.umb-6B and QPhs.umb-6D incrementally increased dormancy; DH lines carrying all four QTLs are considerably more dormant than those carrying only QPhs.umb-4A or none of the four QTLs. Thus, the QTLs identified in this study have the potential to improve PHS resistance in spring wheat.
Collapse
Affiliation(s)
- M M Uzzal A Liton
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Mark C Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
18
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1569-1602. [PMID: 32253477 DOI: 10.1007/s00122-020-03583-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
A review of the available literature on genetics of yield and its component traits, tolerance to abiotic stresses and biofortification should prove useful for future research in wheat in the genomics era. The work reviewed in this article mainly covers the available information on genetics of some important quantitative traits including yield and its components, tolerance to abiotic stresses (heat, drought, salinity and pre-harvest sprouting = PHS) and biofortification (Fe/Zn and phytate contents with HarvestPlus Program) in wheat. Major emphasis is laid on the recent literature on QTL interval mapping and genome-wide association studies, giving lists of known QTL and marker-trait associations. Candidate genes for different traits and the cloned and characterized genes for yield traits along with the molecular mechanism are also described. For each trait, an account of the present status of marker-assisted selection has also been included. The details of available results have largely been presented in the form of tables; some of these tables are included as supplementary files.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India.
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| |
Collapse
|
19
|
Bernardo A, St. Amand P, Le HQ, Su Z, Bai G. Multiplex restriction amplicon sequencing: a novel next-generation sequencing-based marker platform for high-throughput genotyping. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:254-265. [PMID: 31199572 PMCID: PMC6920337 DOI: 10.1111/pbi.13192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 05/31/2023]
Abstract
To enable rapid selection of traits in marker-assisted breeding, markers must be technically simple, low-cost, high-throughput and randomly distributed in a genome. We developed such a technology, designated as Multiplex Restriction Amplicon Sequencing (MRASeq), which reduces genome complexity by polymerase chain reaction (PCR) amplification of amplicons flanked by restriction sites. The first PCR primers contain restriction site sequences at 3'-ends, preceded by 6-10 bases of specific or degenerate nucleotide sequences and then by a unique M13-tail sequence which serves as a binding site for a second PCR that adds sequencing primers and barcodes to allow sample multiplexing for sequencing. The sequences of restriction sites and adjacent nucleotides can be altered to suit different species. Physical mapping of MRASeq SNPs from a biparental population of allohexaploid wheat (Triticum aestivum L.) showed a random distribution of SNPs across the genome. MRASeq generated thousands of SNPs from a wheat biparental population and natural populations of wheat and barley (Hordeum vulgare L.). This novel, next-generation sequencing-based genotyping platform can be used for linkage mapping to screen quantitative trait loci (QTL), background selection in breeding and many other genetics and breeding applications of various species.
Collapse
Affiliation(s)
- Amy Bernardo
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
| | - Ha Quang Le
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Zhenqi Su
- Department of AgronomyKansas State UniversityManhattanKSUSA
- China Agricultural UniversityBeijingChina
| | - Guihua Bai
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSManhattanKSUSA
- Department of AgronomyKansas State UniversityManhattanKSUSA
| |
Collapse
|
20
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
21
|
Zhu Y, Wang S, Wei W, Xie H, Liu K, Zhang C, Wu Z, Jiang H, Cao J, Zhao L, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2947-2963. [PMID: 31324930 DOI: 10.1007/s00122-019-03398-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 05/06/2023]
Abstract
Three major loci for pre-harvest sprouting tolerance (PHST) were mapped on chromosomes 1AL, 3BS, and 6BL, and two CAPS and one dCAPS markers were validated. Sixteen lines with favorable alleles and increased PHST were identified. Pre-harvest sprouting (PHS) significantly affects wheat grain yield and quality. In the present study, the PHS tolerance (PHST) of 192 wheat varieties (lines) was evaluated by assessment of field sprouting, seed germination index, and period of dormancy in different environments. A high-density Illumina iSelect 90K SNP array was used to genotype the panel. A genome-wide association study (GWAS) based on single- and multi-locus mixed linear models was used to detect loci for PHST. The single-locus model identified 23 loci for PHST (P < 0.0001) and explained 6.0-18.9% of the phenotypic variance. Twenty loci were consistent with known quantitative trait loci (QTLs). Three single-nucleotide polymorphism markers closely linked with three major loci (Qphs.ahau-1A, Qphs.ahau-3B, and Qphs.ahau-6B) on chromosomes 1AL, 3BS, and 6BL, respectively, were converted to two cleaved amplified polymorphic sequences (CAPS) and one derived-CAPS markers, and validated in 374 wheat varieties (lines). The CAPS marker EX06323 for Qphs.ahau-6B co-segregated with a novel major QTL underlying PHST in a recombinant inbred line population raised from the cross Jing 411 × Wanxianbaimaizi. Linear regression showed a clear dependence of PHST on the number of favorable alleles. Sixteen varieties showing an elevated degree of PHST were identified and harbored more than 16 favorable alleles. The multi-locus model detected 39 marker-trait associations for PHST (P < 0.0001), of which five may be novel. Six loci common to the two models were identified. The combination of the two GWAS methods contributes to efficient dissection of the complex genetic mechanism of PHST.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Shengxing Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Wenxin Wei
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hongyong Xie
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Kai Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Can Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Zengyun Wu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hao Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Liangxia Zhao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Xianchun Xia
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shihe Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| |
Collapse
|
22
|
Wang X, Liu H, Liu G, Mia MS, Siddique KHM, Yan G. Phenotypic and genotypic characterization of near-isogenic lines targeting a major 4BL QTL responsible for pre-harvest sprouting in wheat. BMC PLANT BIOLOGY 2019; 19:348. [PMID: 31399046 PMCID: PMC6688225 DOI: 10.1186/s12870-019-1961-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Resistance to pre-harvest sprouting (PHS) is one of the major objectives in wheat breeding programs. However, the complex quantitative nature of this trait presents challenges when breeding for PHS resistance. Characterization of PHS using near-isogenic lines (NILs) targeting major quantitative trait locus/loci (QTL/QTLs) can be an effective strategy for the identification of responsible genes and underlying mechanisms. RESULTS In this study, multiple pairs of NILs were developed and confirmed for a major QTL located on the 4BL chromosome arm that contributes to PHS resistance in wheat, using a combined heterogeneous inbred family method and a fast generation cycling system. Phenotypic characterization of these confirmed NILs revealed significant differences in PHS resistance between the isolines, where the presence of the resistant allele increased the resistance to sprouting on spikes by 54.0-81.9% (average 70.8%) and reduced seed germination by 59.4-70.5% (average 66.2%). The 90 K SNP genotyping assay on the confirmed NIL pairs identified eight SNPs on 4BL, associated with five candidate genes; two of the candidate genes were related to seed dormancy. Agronomic traits in the NIL pairs were investigated; both plant height and grain number per spike were positively correlated with PHS susceptibility. CONCLUSIONS This study confirmed multiple pairs of NILs and identified SNPs between PHS isolines, which are valuable resources for further fine-mapping of this locus to clone the major genes for PHS resistance and investigate the possible functional regulation of these genes on important agronomic traits, such as plant height and grain number per spike.
Collapse
Affiliation(s)
- Xingyi Wang
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Guannan Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Md Sultan Mia
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
23
|
Zuo J, Lin CT, Cao H, Chen F, Liu Y, Liu J. Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). PLANTA 2019; 250:187-198. [PMID: 30972483 DOI: 10.1007/s00425-019-03164-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Totally, 23 and 26 loci for the first count germination ratio and the final germination ratio were detected by quantitative trait loci (QTL) mapping and association mapping, respectively, which could be used to facilitate wheat pre-harvest sprouting breeding. Weak dormancy can cause pre-harvest sprouting in seeds of common wheat which significantly reduces grain yield. In this study, both quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) were used to identify loci controlling seed dormancy. The analyses were based on a recombinant inbred line population derived from Zhou 8425B/Chinese Spring cross and 166 common wheat accessions. Inclusive composite interval mapping detected 8 QTL, while 45 loci were identified in the 166 wheat accessions by GWAS. Among these, four loci (Qbifcgr.cas-3AS/Qfcgr.cas-3AS, Qbifcgr.cas-6AL.1/Qfcgr.cas-6AL.1, Qbifcgr.cas-7BL.2/Qfcgr.cas-7BL.2, and Qbigr.cas-3DL/Qgr.cas-3DL) were detected in both QTL mapping and GWAS. In addition, 41 loci co-located with QTL reported previously, whereas 8 loci (Qfcgr.cas-5AL, Qfcgr.cas-6DS, Qfcgr.cas-7AS, Qgr.cas-3DS.1, Qgr.cas-3DS.2, Qbigr.cas-3DL/Qgr.cas-3DL, Qgr.cas-4B, and Qgr.cas-5A) were likely to be new. Linear regression showed the first count germination ratio or the final germination ratio reduced while multiple favorable alleles increased. It is suggested that QTL pyramiding was effective to reduce pre-harvest sprouting risk. This study could enrich the research on pre-harvest sprouting and provide valuable information of marker exploration for wheat breeding programs.
Collapse
Affiliation(s)
- Jinghong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Science, University of Chinese Academy of Science, Beijing, China.
| | - Jindong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Singh L, Anderson JA, Chen J, Gill BS, Tiwari VK, Rawat N. Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat. THE PLANT PATHOLOGY JOURNAL 2019; 35:200-207. [PMID: 31244566 PMCID: PMC6586189 DOI: 10.5423/ppj.oa.01.2019.0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/16/2019] [Accepted: 03/31/2019] [Indexed: 05/25/2023]
Abstract
Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gel-based gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,
USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108,
USA
| | - Jianli Chen
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Aberdeen, ID 83210,
USA
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, Kansas, KS 66506,
USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,
USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,
USA
| |
Collapse
|
25
|
Scheben A, Verpaalen B, Lawley CT, Chan CKK, Bayer PE, Batley J, Edwards D. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:142-152. [PMID: 30548723 DOI: 10.1111/tpj.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Advances in sequencing technology have led to a rapid rise in the genomic data available for plants, driving new insights into the evolution, domestication and improvement of crops. Single nucleotide polymorphisms (SNPs) are a major component of crop genomic diversity, and are invaluable as genetic markers in research and breeding programs. High-throughput SNP arrays, or 'SNP chips', can generate reproducible sets of informative SNP markers and have been broadly adopted. Although there are many public repositories for sequencing data, which are routinely uploaded, there are no formal repositories for crop SNP array data. To make SNP array data more easily accessible, we have developed CropSNPdb (http://snpdb.appliedbioinformatics.com.au), a database for SNP array data produced by the Illumina Infinium™ hexaploid bread wheat (Triticum aestivum) 90K and Brassica 60K arrays. We currently host SNPs from datasets covering 526 Brassica lines and 309 bread wheat lines, and provide search, download and upload utilities for users. CropSNPdb provides a useful repository for these data, which can be applied for a range of genomics and molecular crop-breeding activities.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brent Verpaalen
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Chon-Kit K Chan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Australian Genome Research Facility, Melbourne, Vic., 3000, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
26
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|
27
|
Liu H, Li Q, Xing Y. Genes Contributing to Domestication of Rice Seed Traits and Its Global Expansion. Genes (Basel) 2018; 9:genes9100489. [PMID: 30308970 PMCID: PMC6211083 DOI: 10.3390/genes9100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Asian rice (Oryza sativa) and African rice (Oryza glaberrima) are separately domesticated from their wild ancestors Oryza rufipogon and Oryza barthii, which are very sensitive to daylength. In the process of domestication, some traits that are favorable for the natural survival of wild rice such as seed dormancy and shattering have become favorable ones for human consumption due to the loss-of-function mutations in the genes that are underlying these traits. As a consequence, many genes that are related to these kinds of traits have been fixed with favorable alleles in modern cultivars by artificial selection. After domestication, Oryza sativa cultivars gradually spread to temperate and cool regions from the tropics and subtropics due to the loss of their photoperiod sensitivity. In this paper, we review the characteristics of domestication-related seed traits and heading dates in rice, including the key genes controlling these traits, the differences in allelic diversity between wild rice and cultivars, the geographic distribution of alleles, and the regulatory pathways of these traits. A comprehensive comparison shows that these genes contributed to rice domestication and its global expansion. In addition, these traits have also experienced parallel evolution by artificial selection on the homologues of key genes in other cereals.
Collapse
Affiliation(s)
- Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
- Wuhan Life Origin Biotech Joint Stock Co., Ltd., Wuhan 430206, China.
| | - Qiuping Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Shao M, Bai G, Rife TW, Poland J, Lin M, Liu S, Chen H, Kumssa T, Fritz A, Trick H, Li Y, Zhang G. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1683-1697. [PMID: 29860625 DOI: 10.1007/s00122-018-3107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/02/2018] [Indexed: 05/06/2023]
Abstract
One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety "Danby." The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive × additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance. Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar "Danby" and determine their effects, a doubled haploid population derived from a cross of Danby × "Tiger" was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6-41.0% of the phenotypic variations. A SNP (SNP-222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP-222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive × additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
Collapse
Affiliation(s)
- Mingqin Shao
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Plant Science and Entomology Research Unit, Manhattan, KS, 66506, USA
| | - Trevor W Rife
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Tadele Kumssa
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Harold Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan Li
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| |
Collapse
|
29
|
Genome-Wide Linkage Mapping of Quantitative Trait Loci for Late-Season Physiological and Agronomic Traits in Spring Wheat under Irrigated Conditions. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8050060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'. PLoS One 2018; 13:e0190681. [PMID: 29357369 PMCID: PMC5777647 DOI: 10.1371/journal.pone.0190681] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/19/2017] [Indexed: 12/01/2022] Open
Abstract
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.
Collapse
|
31
|
Steele KA, Quinton-Tulloch MJ, Amgai RB, Dhakal R, Khatiwada SP, Vyas D, Heine M, Witcombe JR. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:38. [PMID: 29563850 PMCID: PMC5842261 DOI: 10.1007/s11032-018-0777-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding programmes despite rapidly expanding repositories of rice genome sequence data. They rely on > 18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. Lack of knowledge about target SNP and InDel variant loci has hampered the uptake by many breeders of Kompetitive allele-specific PCR (KASP), a proprietary technology of LGC genomics that can distinguish alleles at variant loci. KASP is a cost-effective single-step genotyping technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array-based genotyping when used in selection programmes. Before this study, there were 2015 rice KASP marker loci in the public domain, mainly identified by array-based screening, leaving large proportions of the rice genome with no KASP coverage. Here we have addressed the urgent need for a wide choice of appropriate rice KASP assays and demonstrated that NGS can detect many more KASP to give full genome coverage. Through re-sequencing of nine indica rice breeding lines or released varieties, this study has identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold increase in potential selectable KASP markers at a density of 3.1 per 1 kb in the indica crosses analysed and 377,178 polymorphic KASP design sites on average per cross. This knowledge is available to breeders and has been utilised to improve the efficiency of public sector breeding in Nepal, enabling identification of polymorphic KASP at any region or quantitative trait loci in relevant crosses. Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses to show that they detected segregating alleles. The new KASP have replaced SSRs to aid trait selection during marker-assisted backcrossing in these crosses, where target traits include rice blast and BLB resistance loci. Furthermore, we provide the software for plant breeders to generate KASP designs from their own datasets.
Collapse
Affiliation(s)
- Katherine A. Steele
- School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | - Mark J. Quinton-Tulloch
- School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | - Resham B. Amgai
- Biotechnology Division, Nepal Agricultural Research Council, PO Box No. 1135, Kathmandu, Nepal
| | - Rajeev Dhakal
- Anamolbiu Private Ltd., P.O. Box 28, Jagritichok, Bharatpur-11, Chitwan, Nepal
- Present Address: LI-BIRD, PO Box 324, Gairapatan, Kaski, Pokhara, Nepal
| | - Shambhu P. Khatiwada
- Biotechnology Division, Nepal Agricultural Research Council, PO Box No. 1135, Kathmandu, Nepal
| | - Darshna Vyas
- LGC Genomics, Units 1 & 2, Trident Industrial Estate, Pindar Road, Hoddesdon, Herts EN11 0WZ UK
| | - Martin Heine
- LGC Genomics, TGS Haus 8, Ostendstr. 25, 12459 Berlin, Germany
- Present Address: NuGEN Technologies Inc., 201 Industrial Road, Suite 310, San Carlos, CA 94070 USA
| | - John R. Witcombe
- School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd LL57 2UW UK
| |
Collapse
|
32
|
Sydenham SL, Barnard A. Targeted Haplotype Comparisons between South African Wheat Cultivars Appear Predictive of Pre-harvest Sprouting Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:63. [PMID: 29449853 PMCID: PMC5799232 DOI: 10.3389/fpls.2018.00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) has been a serious production constraint for over two decades, especially in the summer rainfall wheat production regions of South Africa. It is a complex genetic trait controlled by multiple genes, which are significantly influenced by environmental conditions. This complicates the accurate prediction of a cultivar's stability in terms of PHS tolerance. A number of reports have documented the presence of major QTL on chromosomes 3A and 4A of modern bread wheat cultivars, which confer PHS tolerance. In this study, the SSR marker haplotype combination of chromosomes 3A and 4A of former and current South African cultivars were compared with the aim to select for improved PHS tolerance levels in future cultivars. A total of 101 wheat cultivars, including a susceptible cultivar and five international tolerant sources, were used in this study. These cultivars and donors were evaluated for their PHS tolerance by making use of a rain simulator. In addition, five seeds of each entry were planted out into seedling trays and leaf material harvested for DNA isolation. A modified CTAB extraction method was used before progressing to downstream PCR applications. Eight SSR markers targeted from the well-characterized 3A and 4A QTL regions associated with PHS tolerance, were used to conduct targeted haplotype analysis. Additionally, recently published KASP SNP markers, which identify the casual SNP mutations within the TaPHS1 gene, were used to genotype the germplasm. The haplotype marker data and phenotypic PHS data were compared across all cultivars and different production regions. A relative change in observed phenotypic variation percentage was obtained per marker allele and across marker haplotype combinations when compared to the PHS susceptible cultivar, Tugela-DN. Clear favorable haplotypes, contributing 40-60% of the variation for PHS tolerance, were identified for QTL 3A and 4A. Initial analyses show haplotype data appear to be predictive of PHS tolerance status and germplasm can now be selected to improve PHS tolerance. These haplotype data are the first of its kind for PHS genotyping in South Africa. In future, this can be used as a tool to predict the possible PHS tolerance range of a new cultivar.
Collapse
|
33
|
Kocheshkova AA, Kroupin PY, Bazhenov MS, Karlov GI, Pochtovyy AA, Upelniek VP, Belov VI, Divashuk MG. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS One 2017; 12:e0188049. [PMID: 29131854 PMCID: PMC5683615 DOI: 10.1371/journal.pone.0188049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022] Open
Abstract
The germplasm collection of 87 wheat-wheatgrass hybrids developed in Tsitisin Main Botanical Garden (Russia, Moscow) was evaluated for resistance to pre-harvest sprouting (PHS) by spike sprouting (SS) and germination index (GI) assays as well as for spike and grain features. The PHS resistance variation and haplotype polymorphism of the wheatgrass ThVp-1 and wheat TaVp-1B genes orthologues of Vp-1 was revealed in the studied collection. Four haplotypes of ThVp-1 were revealed: ThVp-1a (41% of the entries), ThVp-1b (13%), ThVp-1c (29%), and ThVp-1d (15%). The association between the allelic state of ThVp-1 and PHS resistance in the wheat-wheatgrass hybrids was shown: haplotype ThVp-1d of the wheatgrass Vp-1 gene is significantly associated with reduced PHS in the wheat-wheatgrass hybrids (mean SS 0.33, mean GI 0.64). The resistant entries may be perspective as a source of PHS resistance in the development of commercial cultivars of perennial wheat.
Collapse
Affiliation(s)
- A. A. Kocheshkova
- Center for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - P. Yu. Kroupin
- Center for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - M. S. Bazhenov
- Center for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - G. I. Karlov
- Center for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - A. A. Pochtovyy
- Center for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - V. P. Upelniek
- Department of Distant Hybridization, N. V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow, Russia
| | - V. I. Belov
- Department of Distant Hybridization, N. V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow, Russia
| | - M. G. Divashuk
- Center for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
34
|
Yamasaki Y, Gao F, Jordan MC, Ayele BT. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:154. [PMID: 28915785 PMCID: PMC5603048 DOI: 10.1186/s12870-017-1104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. RESULTS The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. CONCLUSION The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.
Collapse
Affiliation(s)
- Yuji Yamasaki
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| | - Mark C. Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
35
|
Kidane YG, Hailemariam BN, Mengistu DK, Fadda C, Pè ME, Dell'Acqua M. Genome-Wide Association Study of Septoria tritici Blotch Resistance in Ethiopian Durum Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2017; 8:1586. [PMID: 28959268 PMCID: PMC5603693 DOI: 10.3389/fpls.2017.01586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/29/2017] [Indexed: 05/21/2023]
Abstract
Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The identification, development, and employment of resistant wheat genetic material is the key to overcoming costs and limitations of fungicide treatments. The search for resistance sources in untapped genetic material may speed up the deployment of STB genetic resistance in the field. Ethiopian durum wheat landraces represent a valuable source of such diversity. In this study, 318 Ethiopian durum wheat genotypes, for the most part traditional landraces, were phenotyped for resistance to different aspects of STB infection. Phenology, yield and yield component traits were concurrently measured the collection. Here we describe the distribution of STB resistance traits in modern varieties and in landraces, and the relation existing between STB resistance and other agronomic traits. STB resistance sources were found in landraces as well as in modern varieties tested, suggesting the presence of alleles of breeding relevance. The genetic material was genotyped with more than 16 thousand genome-wide polymorphic markers to describe the linkage disequilibrium and genetic structure existing within the panel of genotypes, and a genome-wide association (GWA) study was run to allow the identification of genomic loci involved in STB resistance. High diversity and low genetic structure in the panel allowed high efficiency GWA. The GWA scan detected five major putative QTL for STB resistance, only partially overlapping those already reported in the wheat literature. We report four putative loci for Septoria resistance with no match in previous literature: two highly significant ones on Chr 3A and 5A, and two suggestive ones on Chr 4B and 5B. Markers underlying these QTL explained as much as 10% of the phenotypic variance for disease resistance. We found three cases in which putative QTL for agronomic traits overlapped marker trait association deriving from STB GWA. Our results show that the Ethiopian untapped allelic diversity bears a great value in studying the molecular basis of STB resistance and in breeding for resistance in local and international material.
Collapse
Affiliation(s)
- Yosef G. Kidane
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Sirinka Agricultural Research CenterWoldia, Ethiopia
- Bioversity InternationalAddis Ababa, Ethiopia
| | | | - Dejene K. Mengistu
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Department of Dryland Crop and Horticultural Sciences, Mekelle UniversityMekelle, Ethiopia
| | - Carlo Fadda
- Bioversity InternationalAddis Ababa, Ethiopia
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | | |
Collapse
|
36
|
Shorinola O, Balcárková B, Hyles J, Tibbits JFG, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, Uauy C. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm. FRONTIERS IN PLANT SCIENCE 2017; 8:1555. [PMID: 28955352 PMCID: PMC5602128 DOI: 10.3389/fpls.2017.01555] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/25/2017] [Indexed: 05/03/2023]
Abstract
Pre-harvest sprouting (PHS) is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 (PM19) genes and the mitogen-activated protein kinase kinase 3 (TaMKK3-A) gene, have been proposed to underlie Phs-A1. To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A, and not PM19, is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A. Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the study will help inform the choice of germplasm and breeding strategies for the deployment of Phs-A1 resistance into breeding germplasm.
Collapse
Affiliation(s)
| | - Barbara Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Jessica Hyles
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, CanberraACT, Australia
| | - Josquin F. G. Tibbits
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, BundooraVIC, Australia
| | - Matthew J. Hayden
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, BundooraVIC, Australia
| | - Katarina Holušova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Assaf Distelfeld
- The Institute for Cereal Crop Improvement, Tel Aviv UniversityTel Aviv, Israel
| | | | - Jose M. Barrero
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, CanberraACT, Australia
| | | |
Collapse
|
37
|
Tan CT, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Xue Q, Ibrahim AMH, Garza L, Wang S, Sorrells ME, Liu S. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1867-1884. [PMID: 28624908 DOI: 10.1007/s00122-017-2930-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 05/19/2023]
Abstract
Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
Collapse
Affiliation(s)
- Chor-Tee Tan
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Hangjin Yu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Yan Yang
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangyang Xu
- USDA-ARS Wheat, Peanut and Other Field Crop Research Unit, Stillwater, OK, 74075, USA
| | - Mingshun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jackie C Rudd
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Amir M H Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Lisa Garza
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Shichen Wang
- Genomic and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77845, USA
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA.
| |
Collapse
|
38
|
Lin Y, Liu S, Liu Y, Liu Y, Chen G, Xu J, Deng M, Jiang Q, Wei Y, Lu Y, Zheng Y. Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents. Genet Mol Biol 2017; 40:620-629. [PMID: 28696481 PMCID: PMC5596365 DOI: 10.1590/1678-4685-gmb-2016-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a major abiotic factor affecting grain weight and
quality, and is caused by an early break in seed dormancy. Association mapping (AM)
is used to detect correlations between phenotypes and genotypes based on linkage
disequilibrium (LD) in wheat breeding programs. We evaluated seed dormancy in 80
Chinese wheat founder parents in five environments and performed a genome-wide
association study using 6,057 markers, including 93 simple sequence repeat (SSR),
1,472 diversity array technology (DArT), and 4,492 single nucleotide polymorphism
(SNP) markers. The general linear model (GLM) and the mixed linear model (MLM) were
used in this study, and two significant markers (tPt-7980 and
wPt-6457) were identified. Both markers were located on
Chromosome 1B, with wPt-6457 having been identified in a previously
reported chromosomal position. The significantly associated loci contain essential
information for cloning genes related to resistance to PHS and can be used in wheat
breeding programs.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yujiao Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| |
Collapse
|
39
|
Lehnert H, Serfling A, Enders M, Friedt W, Ordon F. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 215:779-791. [PMID: 28517039 DOI: 10.1111/nph.14595] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 05/23/2023]
Abstract
Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P < 0.0001) were detected in the ability to form symbiosis and 30 significant markers associated with root colonization, representing six QTL regions, were detected on chromosomes 3A, 4A and 7A, and candidate genes located in these QTL regions were proposed. The results reported here provide key insights into the genetics of root colonization by mycorrhizal fungi in wheat.
Collapse
Affiliation(s)
- Heike Lehnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Matthias Enders
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Wolfgang Friedt
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| |
Collapse
|
40
|
Peng FY, Yang RC. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:108. [PMID: 28633642 PMCID: PMC5477749 DOI: 10.1186/s12870-017-1056-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/06/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. RESULTS We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for adult resistance and six SNPs for seedling resistance in the NLR genes. Most of these coding SNPs were predicted to alter encoded amino acids and such information may serve as a starting point towards more thorough molecular and functional characterization of the designated Lr genes. Using the primer sequences of 99 known non-SNP markers from leaf rust resistance QTLs, we found candidate genes closely linked to these markers, including Lr34 with distances to its two gene-specific markers being 1212 bases (to cssfr1) and 2189 bases (to cssfr2). CONCLUSION This study represents a comprehensive analysis of ABC, NLR and START genes in the hexaploid wheat genome and their physical relationships with QTLs for leaf rust resistance at seedling and adult stages. Our analysis suggests that the ABC (and START) genes are more likely to be co-located with QTLs for race-nonspecific, adult resistance whereas the NLR genes are more likely to be co-located with QTLs for race-specific resistance that would be often expressed at the seedling stage. Though our analysis was hampered by inaccurate or unknown physical positions of numerous QTLs due to the incomplete assembly of the complex hexaploid wheat genome that is currently available, the observed associations between (i) QTLs for race-specific resistance and NLR genes and (ii) QTLs for nonspecific resistance and ABC genes will help discover SNP variants for leaf rust resistance at seedling and adult stages. The genes containing nonsynonymous SNPs are promising candidates that can be investigated in future studies as potential new sources of leaf rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Fred Y Peng
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Rong-Cai Yang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
- Feed Crops Section, Alberta Agriculture and Forestry, 7000 - 113 Street, Edmonton, AB, T6H 5T6, Canada.
| |
Collapse
|
41
|
Zhou K, Yang J, Wang ZX, Wang JR. Sequence analysis and expression profiles of TaABI5, a pre-harvest sprouting resistance gene in wheat. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0483-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Hiebert CW, Rouse MN, Nirmala J, Fetch T. Genetic Mapping of Stem Rust Resistance to Puccinia graminis f. sp. tritici Race TRTTF in the Canadian Wheat Cultivar Harvest. PHYTOPATHOLOGY 2017; 107:192-197. [PMID: 27705664 DOI: 10.1094/phyto-05-16-0186-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici, is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of P. graminis f. sp. tritici in Africa have been detected and characterized. These include race TRTTF and the Ug99 group of races such as TTKSK. Several Canadian and U.S. spring wheat cultivars, including the widely grown Canadian cultivar 'Harvest', are resistant to TRTTF. However, the genetic basis of resistance to TRTTF in Canadian and U.S. spring wheat cultivars is unknown. The objectives of this study were to determine the number of Sr genes involved in TRTTF resistance in Harvest, genetically map the resistance with DNA markers, and use markers to assess the distribution of that resistance in a panel of Canadian cultivars. A doubled haploid (DH) population was produced from the cross LMPG-6S/Harvest. The DH population was tested with race TRTTF at the seedling stage. Of 92 DH progeny evaluated, 46 were resistant and 46 were susceptible which perfectly fit a 1:1 ratio indicating a single Sr gene was responsible for conferring resistance to TRTTF in Harvest. Mapping with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers placed the resistance gene distally on the chromosome 6AS genetic map, which corresponded to the location reported for Sr8. SSR marker gwm459 and 30 cosegregating SNP markers showed the closest linkage, mapping 2.2 cM proximal to the Sr gene. Gene Sr8a confers resistance to TRTTF and may account for the resistance in Harvest. Testing a panel of Canadian wheat cultivars with four SNP markers closely linked to resistance to TRTTF suggested that the resistance present in Harvest is present in many Canadian cultivars. Two of these SNP markers were also predictive of TRTTF resistance in a panel of 241 spring wheat lines from the United States, Canada, and Mexico.
Collapse
Affiliation(s)
- Colin W Hiebert
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Matthew N Rouse
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Jayaveeramuthu Nirmala
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| | - Tom Fetch
- First author: Agriculture and Agri-Food Canada, Morden Research and Development Centre, 100, Morden, MB R6M 1Y5, Canada; second and third authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108; and fourth author: Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB R7A 5Y3, Canada
| |
Collapse
|
43
|
Lee GA, Jeon YA, Lee HS, Hyun DY, Lee JR, Lee MC, Lee SY, Ma KH, Koh HJ. New Genetic Loci Associated with Preharvest Sprouting and Its Evaluation Based on the Model Equation in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1393. [PMID: 28848592 PMCID: PMC5550670 DOI: 10.3389/fpls.2017.01393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 05/19/2023]
Abstract
Preharvest sprouting (PHS) in rice panicles is an important quantitative trait that causes both yield losses and the deterioration of grain quality under unpredictable moisture conditions at the ripening stage. However, the molecular mechanism underlying PHS has not yet been elucidated. Here, we explored the genetic loci associated with PHS in rice and formulated a model regression equation for rapid screening for use in breeding programs. After re-sequencing 21 representative accessions for PHS and performing enrichment analysis, we found that approximately 20,000 SNPs revealed distinct allelic distributions between PHS resistant and susceptible accessions. Of these, 39 candidate SNP loci were selected, including previously reported QTLs. We analyzed the genotypes of 144 rice accessions to determine the association between PHS and the 39 candidate SNP loci, 10 of which were identified as significantly affecting PHS based on allele type. Based on the allele types of the SNP loci, we constructed a regression equation for evaluating PHS, accounting for an R2 value of 0.401 in japonica rice. We validated this equation using additional accessions, which exhibited a significant R2 value of 0.430 between the predicted values and actual measurements. The newly detected SNP loci and the model equation could facilitate marker-assisted selection to predict PHS in rice germplasm and breeding lines.
Collapse
Affiliation(s)
- Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Ho-Sun Lee
- International Technology Cooperation CenterJeonju, South Korea
| | - Do Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Myung-Chul Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Sok-Young Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- *Correspondence: Hee-Jong Koh,
| |
Collapse
|
44
|
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2017; 8:1389. [PMID: 28848588 PMCID: PMC5552701 DOI: 10.3389/fpls.2017.01389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/04/2023]
Abstract
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding.
Collapse
Affiliation(s)
- Weie Wen
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT)Beijing, China
| | - Fengmei Gao
- Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hui Jin
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| |
Collapse
|
45
|
Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ, Pu ZE, Wei YM, Zheng YL, Hickey LT, Wang JR. Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2017; 8:401. [PMID: 28428791 PMCID: PMC5382224 DOI: 10.3389/fpls.2017.00401] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/09/2017] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) is mainly caused by the breaking of seed dormancy in high rainfall regions, which leads to huge economic losses in wheat. In this study, we evaluated 717 Chinese wheat landraces for PHS resistance and carried out genome-wide association studies (GWAS) using to 9,740 DArT-seq and 178,803 SNP markers. Landraces were grown across six environments in China and germination testing of harvest-ripe grain was used to calculate the germination rate (GR) for each accession at each site. GR was highly correlated across all environments. A large number of landraces (194) displayed high levels of PHS resistance (i.e., mean GR < 0.20), which included nine white-grained accessions. Overall, white-grained accessions displayed a significantly higher mean GR (42.7-79.6%) compared to red-grained accessions (19.1-56.0%) across the six environments. Landraces from mesic growing zones in southern China showed higher levels of PHS resistance than those sourced from xeric areas in northern and north-western China. Three main quantitative trait loci (QTL) were detected by GWAS: one on 5D that appeared to be novel and two co-located with the grain color transcription factor Tamyb10 on 3A and 3D. An additional 32 grain color related QTL (GCR-QTL) were detected when the set of red-grained landraces were analyzed separately. GCR-QTL occurred at high frequencies in the red-grained accessions and a strong correlation was observed between the number of GCR-QTL and GR (R2 = 0.62). These additional factors could be critical for maintaining high levels of PHS resistance and represent targets for introgression into white-grained wheat cultivars. Further, investigation of the origin of haplotypes associated with the three main QTL revealed that favorable haplotypes for PHS resistance were more common in accessions from higher rainfall zones in China. Thus, a combination of natural and artificial selection likely resulted in landraces incorporating PHS resistance in China.
Collapse
Affiliation(s)
- Yong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Meng-Ping Cheng
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Kwame O. Dankwa
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Xu Chen
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhan-Yi Li
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Shang Gao
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhi-En Pu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural UniversityYa’an, China
| | - Lee T. Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Ji-Rui Wang,
| |
Collapse
|
46
|
Haploid and Doubled Haploid Techniques in Perennial Ryegrass (Lolium perenne L.) to Advance Research and Breeding. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6040060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X. Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2179-2190. [PMID: 27531362 DOI: 10.1007/s00122-016-2766-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/30/2016] [Indexed: 05/23/2023]
Abstract
Nine QTL for black point resistance in wheat were identified using a RIL population derived from a Linmai 2/Zhong 892 cross and 90K SNP assay. Black point, discoloration of the embryo end of the grain, downgrades wheat grain quality leading to significant economic losses to the wheat industry. The availability of molecular markers will accelerate improvement of black point resistance in wheat breeding. The aims of this study were to identify quantitative trait loci (QTL) for black point resistance and tightly linked molecular markers, and to search for candidate genes using a high-density genetic linkage map of wheat. A recombinant inbred line (RIL) population derived from the cross Linmai 2/Zhong 892 was evaluated for black point reaction during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for seven environments. A high-density linkage map was constructed by genotyping the RILs with the wheat 90K single nucleotide polymorphism (SNP) chip. Composite interval mapping detected nine QTL on chromosomes 2AL, 2BL, 3AL, 3BL, 5AS, 6A, 7AL (2) and 7BS, designated as QBp.caas-2AL, QBp.caas-2BL, QBp.caas-3AL, QBp.caas-3BL, QBp.caas-5AS, QBp.caas-6A, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS, respectively. All resistance alleles, except for QBp.caas-7AL.1 from Linmai 2, were contributed by Zhong 892. QBp.caas-3BL, QBp.caas-5AS, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS probably represent new loci for black point resistance. Sequences of tightly linked SNPs were used to survey wheat and related cereal genomes identifying three candidate genes for black point resistance. The tightly linked SNP markers can be used in marker-assisted breeding in combination with the kompetitive allele specific PCR technique to improve black point resistance.
Collapse
Affiliation(s)
- Jindong Liu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Genetics and Breeding, State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 20 Jingjusi Road, Chengdu, 610066, Sichuan, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Weie Wen
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chaojie Xie
- Department of Plant Genetics and Breeding, State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
48
|
Lin M, Zhang D, Liu S, Zhang G, Yu J, Fritz AK, Bai G. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics 2016; 17:794. [PMID: 27729004 PMCID: PMC5059910 DOI: 10.1186/s12864-016-3148-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre-harvest sprouting (PHS) in wheat can cause substantial reduction in grain yield and end-use quality. Grain color (GC) together with other components affect PHS resistance. Several quantitative trait loci (QTL) have been reported for PHS resistance, and two of them on chromosome 3AS (TaPHS1) and 4A have been cloned. METHODS To determine genetic architecture of PHS and GC and genetic relationships of the two traits, a genome-wide association study (GWAS) was conducted by evaluating a panel of 185 U.S. elite breeding lines and cultivars for sprouting rates of wheat spikes and GC in both greenhouse and field experiments. The panel was genotyped using the wheat 9K and 90K single nucleotide polymorphism (SNP) arrays. RESULTS Four QTL for GC on four chromosomes and 12 QTL for PHS resistance on 10 chromosomes were identified in at least two experiments. QTL for PHS resistance showed varied effects under different environments, and those on chromosomes 3AS, 3AL, 3B, 4AL and 7A were the more frequently identified QTL. The common QTL for GC and PHS resistance were identified on the long arms of the chromosome 3A and 3D. CONCLUSIONS Wheat grain color is regulated by the three known genes on group 3 chromosomes and additional genes from other chromosomes. These grain color genes showed significant effects on PHS resistance in some environments. However, several other QTL that did not affect grain color also played a significant role on PHS resistance. Therefore, it is possible to breed PHS-resistant white wheat by pyramiding these non-color related QTL.
Collapse
Affiliation(s)
- Meng Lin
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Dadong Zhang
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianming Yu
- Agronomy Department, Iowa State University Ames, Iowa, 50011, USA
| | - Allan K Fritz
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- Agronomy Department, Kansas State University, Manhattan, KS, 66506, USA. .,Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA.
| |
Collapse
|
49
|
Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4169-78. [PMID: 27217549 PMCID: PMC5301926 DOI: 10.1093/jxb/erw194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties.
Collapse
Affiliation(s)
| | - Nicholas Bird
- John Innes Centre, Norwich Research Park, NR4 7UH, UK KWS UK Ltd, Hertfordshire, SG8 7RE, UK
| | | | - Simon Berry
- Limagrain UK Ltd, Woolpit Business Park, IP30 9UP, UK
| | | | | | | | - Tanja Gerjets
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Barbara Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - M J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - John Flintham
- John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | | |
Collapse
|
50
|
Bernardo A, Wang S, St. Amand P, Bai G. Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat. PLoS One 2015; 10:e0143890. [PMID: 26625271 PMCID: PMC4666610 DOI: 10.1371/journal.pone.0143890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 01/06/2023] Open
Abstract
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat.
Collapse
Affiliation(s)
- Amy Bernardo
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shan Wang
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Paul St. Amand
- United States Department of Agriculture, Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, United States of America
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
- United States Department of Agriculture, Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, United States of America
| |
Collapse
|