1
|
Wang W, Li X, Fan S, He Y, Wei M, Wang J, Yin Y, Liu Y. Combined genomic and transcriptomic analysis reveals the contribution of tandem duplication genes to low-temperature adaptation in perennial ryegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1216048. [PMID: 37502702 PMCID: PMC10368995 DOI: 10.3389/fpls.2023.1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an agronomically important cool-season grass species that is widely used as forage for ruminant animal production and cultivated in temperate regions for the establishment of lawns. However, the underlying genetic mechanism of the response of L. perenne to low temperature is still unclear. In the present study, we performed a comprehensive study and identified 3,770 tandem duplication genes (TDGs) in L. perenne, and evolutionary analysis revealed that L. perenne might have undergone a duplication event approximately 7.69 Mya. GO and KEGG pathway functional analyses revealed that these TDGs were mainly enriched in photosynthesis, hormone-mediated signaling pathways and responses to various stresses, suggesting that TDGs contribute to the environmental adaptability of L. perenne. In addition, the expression profile analysis revealed that the expression levels of TDGs were highly conserved and significantly lower than those of all genes in different tissues, while the frequency of differentially expressed genes (DEGs) from TDGs was much higher than that of DEGs from all genes in response to low-temperature stress. Finally, in-depth analysis of the important and expanded gene family indicated that the members of the ELIP subfamily could rapidly respond to low temperature and persistently maintain higher expression levels during all low temperature stress time points, suggesting that ELIPs most likely mediate low temperature responses and help to facilitate adaptation to low temperature in L. perenne. Our results provide evidence for the genetic underpinning of low-temperature adaptation and valuable resources for practical application and genetic improvement for stress resistance in L. perenne.
Collapse
Affiliation(s)
- Wei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiaoning Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yang He
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Meng Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Jiayi Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| |
Collapse
|
2
|
Cheng M, Zheng J, Cui K, Luo X, Yang T, Pan Z, Zhou Y, Chen S, Chen Y, Wang H, Zhang R, Yao M, Li H, He R. Transcriptomics integrated with metabolomics provides a new strategy for mining key genes in response to low temperature stress in Helictotrichon virescens. Int J Biol Macromol 2023:125070. [PMID: 37244338 DOI: 10.1016/j.ijbiomac.2023.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
H. virescens is a perennial herbaceous plant with highly tolerant to cold weather, but the key genes that respond to low temperature stress still remain unclear. Hence, RNA-seq was performed using leaves of H. virescens treated at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 9416 DEGs were significantly enriched into seven KEGG pathways. The LC-QTRAP platform was performed using leaves of H. virescens leaves at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 1075 metabolites were detected, which were divided into 10 categories. Additionally, 18 major metabolites, two key pathways, and six key genes were mined using a multi-omics analytical strategy. The RT-PCR results showed that with the extension of treatment time, the expression levels of key genes in the treatment group gradually increased, and the difference between the treatment group and the control group was extremely significant. Notably, the functional verification results showed that the key genes positively regulated cold tolerance of H. virescens. These results can lay a foundation for the in-depth analysis of the mechanism of response of perennial herbs to low temperature stress.
Collapse
Affiliation(s)
- Mingjun Cheng
- Institute of Qinghai-tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Junjun Zheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kuoshu Cui
- Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Xuan Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zeyang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyong Chen
- Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Youjun Chen
- Institute of Qinghai-tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Hui Wang
- Institute of Qinghai-tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Ruizhen Zhang
- Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Mingjiu Yao
- Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Hongquan Li
- Sichuan ZoigeAlpine Wetland Ecosystem National Observationand Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Molecular Mechanism of Cold Tolerance of Centipedegrass Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24021265. [PMID: 36674780 PMCID: PMC9860682 DOI: 10.3390/ijms24021265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.
Collapse
|
4
|
Cheng M, Pan Z, Cui K, Zheng J, Luo X, Chen Y, Yang T, Wang H, Li X, Zhou Y, Lei X, Li Y, Zhang R, Iqbal MZ, He R. RNA sequencing and weighted gene co-expression network analysis uncover the hub genes controlling cold tolerance in Helictotrichon virescens seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:938859. [PMID: 36119608 PMCID: PMC9478469 DOI: 10.3389/fpls.2022.938859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/08/2022] [Indexed: 05/09/2023]
Abstract
Helictotrichon virescens is a perennial herbaceous plant with a life expectancy of about 10 years. It has high cold and heat resistance and can successfully survive over winter in the habitats with a temperature range of -25 to 25°C. Therefore, this study aimed to identify the key genes regulating low-temperature stress responses in H. virescens and analyze cold tolerant at molecular level. This study used RNA sequencing (RNA-Seq) and weighted gene co-expression network analysis (WGCNA) to identify the hub genes associated with cold tolerance in H. virescens. RT-PCR was conducted, homologous genes were identified, and related bioinformatics were analyzed to verify the identified hub genes. Moreover, WGCNA analysis showed that only the brown module had the highest correlation with the active-oxygen scavenging enzymes [peroxide (POD), superoxide dismutase (SOD), and catalase (CAT)]. The expression levels of three hub genes in the brown module (Cluster-37118.47362, cluster-37118.47713, and cluster-37118.66740) were significantly higher under low-temperature stress than those under control conditions. Furthermore, gene ontology (GO) and KEGG annotations showed that the three hub genes were mainly enriched in the metabolism pathways of sphingolipids, selenocompounds, glyoxylate, and dicarboxylate, carotenoids biosynthesis, and other biological pathways. The results of this study also showed that the subcellular localization prediction results showed that the cold tolerance hub genes were all localized to the plasma membrane. By constructing a protein interaction network, it was found that the hub gene Cluster-37118.66740 interacted with Sb09g003460.1 and Sb04g020180.1 proteins in Sorghum bicolor. By constructing phylogenetic trees of the four species of H. virescens, Sorghum bicolo, Oryza sativa Japonica, and Arabidopsis thaliana, the results showed that, the hub gene Cluster 37118.66740 (of H. virescens) and Os03g0340500 (of Oryza sativa Japonica) belonged to the same ancestral branch and were in the same subfamily. Thus, this study provides methodology and guidance to identify the cold tolerance genes for other herbage and their cold tolerant molecular mechanisms at molecular level.
Collapse
Affiliation(s)
- Mingjun Cheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Grass Industry Technology Research and Promotion Center, Chengdu, China
| | - Zeyang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kuoshu Cui
- Sichuan Agricultural Technology Extension Station, Chengdu, China
| | - Junjun Zheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuan Luo
- Institute of Agricultural Information and Rural Economy, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Youjun Chen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Tao Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Wang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruizhen Zhang
- Sichuan Grass Industry Technology Research and Promotion Center, Chengdu, China
| | - Muhammad Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Ruyu He,
| |
Collapse
|
5
|
Wang F, Chen S, Cai K, Lu Z, Yang Y, Tigabu M, Zhao X. Transcriptome sequencing and gene expression profiling of Pinus sibirica under different cold stresses. BREEDING SCIENCE 2021; 71:550-563. [PMID: 35087319 PMCID: PMC8784350 DOI: 10.1270/jsbbs.21009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 05/11/2023]
Abstract
Cold stress is a major abiotic factor that affects plant growth and geographical distribution. Pinus sibirica is extremely frigostable tree species. To understand the molecular mechanisms of cold tolerance by P. sibirica, physiological responses were analyzed and transcriptome profiling was conducted to the plants treated by cold stress. The physiological data showed that membrane permeability relative conductivity (REC), reactive oxygen species (ROS), malonaldehyde (MDA) content, peroxidase (POD) and catalase (CAT) activity, soluble sugar, soluble protein and proline contents were increased significantly (p < 0.05) in response to cold stress. Transcriptome analysis identified a total of 871, 1397 and 872 differentially expressed genes (DEGs) after cold treatment for 6 h, 24 h and 48 h at -20°C, respectively. The signaling pathway mediated by Ca2+ as a signaling molecule and abscisic acid pathways were the main cold signal transduction pathways in P. sibirica. The APETALA2/Ethylene-Responsive Factor (AP2/ERF) and MYB transcription factor families also play an important role in the transcriptional regulation of P. sibirica. In addition, many genes related to photosynthesis were differentially expressed under cold stress. We also validated the reliability of transcriptome data with quantitative real-time PCR. This study lays the foundation for understanding the molecular mechanisms related to cold responses in P. sibirica.
Collapse
Affiliation(s)
- Fang Wang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- Jinlin Provincial Academy of Forestry Sciences, Changchun, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhimin Lu
- Jinlin Provincial Academy of Forestry Sciences, Changchun, China
| | - Yuchun Yang
- Jinlin Provincial Academy of Forestry Sciences, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Corresponding author (e-mail: )
| |
Collapse
|
6
|
A comparison of shared patterns of differential gene expression and gene ontologies in response to water-stress in roots and leaves of four diverse genotypes of Lolium and Festuca spp. temperate pasture grasses. PLoS One 2021; 16:e0249636. [PMID: 33831050 PMCID: PMC8031407 DOI: 10.1371/journal.pone.0249636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ryegrasses (Lolium spp.) and fescues (Festuca spp.) are closely related and widely cultivated perennial forage grasses. As such, resilience in the face of abiotic stresses is an important component of their traits. We have compared patterns of differentially expressed genes (DEGs) in roots and leaves of two perennial ryegrass genotypes and a single genotype of each of a festulolium (predominantly Italian ryegrass) and meadow fescue with the onset of water stress, focussing on overall patterns of DEGs and gene ontology terms (GOs) shared by all four genotypes. Plants were established in a growing medium of vermiculite watered with nutrient solution. Leaf and root material were sampled at 35% (saturation) and, as the medium dried, at 15%, 5% and 1% estimated water contents (EWCs) and RNA extracted. Differential gene expression was evaluated comparing the EWC sampling points from RNAseq data using a combination of analysis methods. For all genotypes, the greatest numbers of DEGs were identified in the 35/1 and 5/1 comparisons in both leaves and roots. In total, 566 leaf and 643 root DEGs were common to all 4 genotypes, though a third of these leaf DEGs were not regulated in the same up/down direction in all 4 genotypes. For roots, the equivalent figure was 1% of the DEGs. GO terms shared by all four genotypes were often enriched by both up- and down-regulated DEGs in the leaf, whereas generally, only by either up- or down-regulated DEGs in the root. Overall, up-regulated leaf DEGs tended to be more genotype-specific than down-regulated leaf DEGs or root DEGs and were also associated with fewer GOs. On average, only 5–15% of the DEGs enriching common GO terms were shared by all 4 genotypes, suggesting considerable variation in DEGs between related genotypes in enacting similar biological processes.
Collapse
|
7
|
Yu T, Zhang J, Cao J, Cai Q, Li X, Sun Y, Li S, Li Y, Hu G, Cao S, Liu C, Wang G, Wang L, Duan Y. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels. Genomics 2021; 113:782-794. [PMID: 33516847 DOI: 10.1016/j.ygeno.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Maize (Zea mays L.) is a thermophilic plant and a minor drop in temperature can prolong the maturity period. Plants respond to cold stress through structural and functional modification in cell membranes as well as changes in the photosynthesis and energy metabolism. In order to understand the molecular mechanisms underlying cold tolerance and adaptation, we employed leaf transcriptome sequencing together with leaf microstructure and relative electrical conductivity measurements in two maize inbred lines, having different cold stress tolerance potentials. The leaf physiological and transcriptomic responses of maize seedlings were studied after growing both inbred lines at 5 °C for 0, 12 and 24 h. Differentially expressed genes were enriched in photosynthesis antenna proteins, MAPK signaling pathway, plant hormone signal transduction, circadian rhythm, secondary metabolites related pathways, ribosome, and proteasome. The seedlings of both genotypes employed common stress responsive pathways to respond to cold stress. However, the cold tolerant line B144 protected its photosystem II from photooxidation by upregulating D1 proteins. The sensitive line Q319 was unable to close its stomata. Collectively, B144 exhibited a cold tolerance owing to its ability to mediate changes in stomata opening as well as protecting photosystem. These results increase our understanding on the cold stress tolerance in maize seedlings and propose multiple key regulators of stress responses such as modifications in photosystem II, stomata guard cell opening and closing, changes in secondary metabolite biosynthesis, and circadian rhythm. This study also presents the signal transduction related changes in MAPK and phytohormone signaling pathways in response to cold stress during seedling stage of maize.
Collapse
Affiliation(s)
- Tao Yu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China; Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China; Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Jingsheng Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China.
| | - Quan Cai
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Xin Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Yan Sun
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Sinan Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Yunlong Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Guanghui Hu
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Shiliang Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| | - Gangqing Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lishan Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| | - Yajuan Duan
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Dong W, Ma X, Jiang H, Zhao C, Ma H. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC PLANT BIOLOGY 2020; 20:362. [PMID: 32736517 PMCID: PMC7393922 DOI: 10.1186/s12870-020-02559-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/19/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low temperature limits the growth and development and geographical distribution of plants. Poa pratensis is a cool-season turfgrass mainly grown in urban areas. However, low winter temperature or cold events in spring and autumn may cause P.pratensis mortality, affecting the appearance of lawns. P.pratensis var. anceps cv. Qinghai (PQ) is widely distributed in the Qinghai-Tibet Plateau above 3000 m. PQ has greater cold tolerance than the commercially cultivated P.pratensis varieties. However, existing studies on the response mechanism of PQ to low temperatures have mainly focused on physiological and biochemical perspectives, while changes in the PQ transcriptome during the response to cold stress have not been reported. RESULTS To investigate the molecular mechanism of the PQ cold response and identify genes to improve the low-temperature tolerance of P.pratensis, we analyzed and compared the transcriptomes of PQ and the cold-sensitive P.pratensis cv. 'Baron' (PB) under cold stress using RNA sequencing. We identified 5996 and 3285 differentially expressed genes (DEGs) between the treatment vs control comparison of PQ and PB, respectively, with 5612 DEGs specific to PQ. Based on the DEGs, important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as "starch and sucrose metabolism", "protein processing in endoplasmic reticulum", "phenylalanine metabolism" and "glycolysis/gluconeogenesis" were significantly enriched in PQ, and "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "galactose metabolism" and "glutathione metabolism" were significantly enriched in PB. In addition, the "glycolysis" and "citrate cycle (TCA cycle)" pathways were identified as involved in cold tolerance of P.pratensis. CONCLUSIONS As we know, this is the first study to explore the transcriptome of P.pratensis var. anceps cv. Qinghai. Our study not noly provides important insights into the molecular mechanisms of P.pratensis var. anceps cv. Qinghai responds to cold stress, but also systematically reveals the changes of key genes and products of glycolysis and TCA cycle in response to cold stress, which is conductive to the breeding of cold-tolerance P.pratensis genotype.
Collapse
Affiliation(s)
- Wenke Dong
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiang Ma
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, 810016, China
| | - Hanyu Jiang
- Department of Physic, Nanjing Normal University, Nanjing, 210097, China
| | - Chunxu Zhao
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huiling Ma
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Long S, Yan F, Yang L, Sun Z, Wei S. Responses of Manila Grass (Zoysia matrella) to chilling stress: From transcriptomics to physiology. PLoS One 2020; 15:e0235972. [PMID: 32687533 PMCID: PMC7371177 DOI: 10.1371/journal.pone.0235972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Manila grass (Zoysia matrella), a warm-season turfgrass, usually wilts and browns by late autumn because of low temperature. To elucidate the molecular mechanisms regarding Manila grass responses to cold stress, we performed transcriptome sequencing of leaves exposed to 4°C for 0 (CK), 2h (2h_CT) and 72h (72h_CT) by Illumina technology. Approximately 250 million paired-end reads were obtained and de novo assembled into 82,605 unigenes. A total of 34,879 unigenes were annotated by comparing their sequence to public protein databases. At the 2h- and 72h-cold time points, 324 and 5,851 differentially expressed genes (DEGs) were identified, respectively. Gene ontology (GO) and metabolism pathway (KEGG) enrichment analyses of DEGs indicated that auxin, gibberellins, ethylene and calcium took part in the cold signal transduction in the early period. And in the late cold period, electron transport activities, photosynthetic machinery and activity, carbohydrate and nitrogen metabolism, redox equilibrium and hormone metabolism were disturbed. Low temperature stress triggered high light, drought and oxidative stress. At the physiological level, cold stress induced a decrease in water content, an increase in levels of total soluble sugar, free proline and MDA, and changes in bioactive gibberellins levels, which supported the changes in gene expression. The results provided a large set of sequence data of Manila grass as well as molecular mechanisms of the grass in response to cold stress. This information will be helpful for future study of molecular breeding and turf management.
Collapse
Affiliation(s)
- Sixin Long
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Fengying Yan
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Lin Yang
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail: (ZS); (SW)
| | - Shanjun Wei
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
- * E-mail: (ZS); (SW)
| |
Collapse
|
10
|
Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in Brassica napus L. G3-GENES GENOMES GENETICS 2019; 9:2723-2737. [PMID: 31167831 PMCID: PMC6686917 DOI: 10.1534/g3.119.400229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oil rapeseed (Brassica napus L.) is a typical winter biennial plant, with high cold tolerance during vegetative stage. In recent years, more and more early-maturing rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. Little is known about the molecular mechanisms for coping with different low-temperature stress conditions in rapeseed. In this study, we investigated 47,328 differentially expressed genes (DEGs) of two early-maturing rapeseed varieties with different cold tolerance treated with cold shock at chilling (4°) and freezing (−4°) temperatures, as well as chilling and freezing stress following cold acclimation or control conditions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two conserved (the primary metabolism and plant hormone signal transduction) and two novel (plant-pathogen interaction pathway and circadian rhythms pathway) signaling pathways were significantly enriched with differentially-expressed transcripts. Our results provided a foundation for understanding the low-temperature stress response mechanisms of rapeseed. We also propose new ideas and candidate genes for genetic improvement of rapeseed tolerance to cold stresses.
Collapse
|
11
|
Zhou W, Chen Q, Wang XB, Hughes TO, Liu JJ, Zhang X. De novo assembly of the Platycladus orientalis (L.) Franco transcriptome provides insight into the development and pollination mechanism of female cone based on RNA-Seq data. Sci Rep 2019; 9:10191. [PMID: 31308452 PMCID: PMC6629706 DOI: 10.1038/s41598-019-46696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/03/2019] [Indexed: 11/30/2022] Open
Abstract
For seed-bearing plants, the basis of seed and fruit formation is pollination. The normal progression of pollination is through advances in continuous signal exchange and material transfer, which occur mainly in female reproductive organs; thus, the molecular mechanism of development in female reproductive organs is vital for understanding the principle of pollination. However, molecular biology studies on the development of female cones related to pollination are rare and unclear in gymnosperms, especially in Cupressaceae. In this study, Platycladus orientalis, a monotypic genus within Cupressaceae, was chosen to examine female cone transcriptomes at pre-pollination and pollination stages by Illumina paired-end sequencing technology to de novo sequence six libraries with 3 biological replicates. These libraries were used to construct a P. orientalis transcriptome database containing 71,669 unigenes (4,963 upregulated unigenes and 11,747 downregulated unigenes at the pollination stage) for subsequent analysis. Based on the annotations and expression levels, the functions of differentially expressed unigenes and enriched pathways between the developmental processes of female cones were analysed to detail the preliminary development and pollination mechanism of the female cone. Targeted investigations were specifically performed to determine the elementary mechanism of secretion and functioning of the pollination drop, a vital ovule secretion at the pollination stage. Ultimately, the expression of 15 unigenes selected between two stages were further assessed and confirmed using qRT-PCR, which demonstrated reliable data and significant differences in the expression profiles of key genes. As one of the largest available transcriptomic resources of this species, the database is constructed to prospectively adapt to the physiological and genomic data of woody plants. This work provided the first transcriptome profile of P. orientalis female cones at different developmental stages, and will promote the illumination of the pollination mechanism of P. orientalis, and will serve as the basis for in-depth genomic study in the Cupressaceae family. This initiative will arouse the interest and attention of scholars and pave the way for future studies.
Collapse
Affiliation(s)
- Wei Zhou
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Qi Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiao-Bing Wang
- School of Life Science and Technology, Xinxiang University, Xinxiang, Henan, P.R. China
| | - Tyler O Hughes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jian-Jun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| | - Xin Zhang
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, College of Forestry, Northwest A&F University, Yangling, P.R. China.
| |
Collapse
|
12
|
Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans). PLoS One 2018; 13:e0200002. [PMID: 29985922 PMCID: PMC6037364 DOI: 10.1371/journal.pone.0200002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Cold stress seriously affects banana growth, yield and fruit quality. Long noncoding RNAs (lncRNAs) have been demonstrated as key regulators of biotic and abiotic stress in plants, but the identification and prediction of cold responsive mRNAs and lncRNAs in wild banana remains unexplored. In present study, a cold resistant wild banana line from China was used to profile the cold-responsive mRNAs and lncRNAs by RNA-seq under cold stress conditions, i.e. 13°C (critical growth temperature), 4°C (chilling temperature), 0°C (freezing temperature) and normal growing condition, i.e. 28°C (control group). A total of 12,462 lncRNAs were identified in cold-stressed wild banana. In mRNA, much more alternative splicing events occurred in wild banana under the cold stress conditions compared with that in the normal growing condition. The GO analysis of differential expression genes (DEGs) showed the biochemical processes and membrane related genes responded positively to the cold stress. The KEGG pathway enrichment analysis of the DEGs showed that the pathways of photosynthesis, photosynthesis–antenna proteins, circadian rhythm–plant, glutathione metabolism, starch and sucrose metabolism, cutin/suberine/biosynthesis were altered or affected by the cold stress conditions. Our analyses of the generated transcriptome and lncRNAs provide new insights into regulating expression of genes and lncRNAs that respond to cold stress in the wild banana.
Collapse
|
13
|
Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity. Appl Biochem Biotechnol 2017; 183:613-635. [PMID: 28948462 DOI: 10.1007/s12010-017-2605-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022]
Abstract
The bacterial groups in the gut ecosystem play key role in the maintenance of host's metabolic and structural functionality. The gut microbiota enhances digestion processing, helps in digestion of complex substances, synthesizes beneficial bioactive compounds, enhances bioavailability of minerals, impedes growth of pathogenic microbes, and prevents various diseases. It is, therefore, desirable to have an adequate intake of prebiotic biomolecules, which promote favorable modulation of intestinal microflora. Prebiotics are non-digestible and chemically stable structures that significantly enhance growth and functionality of gut microflora. The non-digestible carbohydrate, mainly oligosaccharides, covers a major part of total available prebiotics as dietary additives. The review describes the types of prebiotic low molecular weight carbohydrates, i.e., oligosaccharides, their structure, biosynthesis, functionality, and applications, with a special focus given to fructooligosaccharides (FOSs). The review provides an update on enzymes executing hydrolytic and fructosyltransferase activities producing prebiotic FOS biomolecules, and future perspectives.
Collapse
|
14
|
Optimal Regulation of the Balance between Productivity and Overwintering of Perennial Grasses in a Warmer Climate. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Fu J, Miao Y, Shao L, Hu T, Yang P. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics 2016; 17:870. [PMID: 27814694 PMCID: PMC5097361 DOI: 10.1186/s12864-016-3222-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Elymus nutans Griseb., is an important alpine perennial forage of Pooideae subfamily with strong inherited cold tolerance. To get a deeper insight into its molecular mechanisms of cold tolerance, we compared the transcriptome profiling by RNA-Seq in two genotypes of Elymus nutans Griseb. the tolerant Damxung (DX) and the sensitive Gannan (GN) under cold stress. RESULTS The new E. nutans transcriptomes were assembled and comprised 200,520 and 181,331 transcripts in DX and GN, respectively. Among them, 5436 and 4323 genes were differentially expressed in DX and GN, with 170 genes commonly expressed over time. Early cold responses involved numerous genes encoding transcription factors and signal transduction in both genotypes. The AP2/EREBP famliy of transcription factors was predominantly expressed in both genotypes. The most significant transcriptomic changes in the later phases of cold stress are associated with oxidative stress, primary and secondary metabolism, and photosynthesis. Higher fold expressions of fructan, trehalose, and alpha-linolenic acid metabolism-related genes were detected in DX. The DX-specific dehydrins may be promising candidates to improve cold tolerance. Twenty-six hub genes played a central role in both genotypes under cold stress. qRT-PCR analysis of 26 genes confirmed the RNA-Seq results. CONCLUSIONS The stronger transcriptional differentiation during cold stress in DX explains its better cold tolerance compared to GN. The identified fructan biosynthesis, alpha-linolenic acid metabolism, and DX-specific dehydrin-related genes may provide genetic resources for the improvement of cold-tolerant characters in DX. Our findings provide important clues for further studies of the molecular mechanisms underlying cold stress responses in plants.
Collapse
Affiliation(s)
- Juanjuan Fu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanjun Miao
- College of Plant Science, Agriculture and Animal Husbandry College of Tibet University, Linzhi, Tibet, 860000, China
| | - Linhui Shao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100101, China
| | - Tianming Hu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Peizhi Yang
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Kovi MR, Ergon Å, Rognli OA. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:140-146. [PMID: 27479037 DOI: 10.1016/j.pbi.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 05/11/2023]
Abstract
Climate change creates new patterns of seasonal climate variation with higher temperatures, longer growth seasons and more variable winter climates. This is challenging the winter survival of perennial herbaceous plants. In this review, we focus on the effects of variable temperatures during autumn/winter/spring, and its interactions with light, on the development and maintenance of freezing tolerance. Cold temperatures induce changes at several organizational levels in the plant (cold acclimation), leading to the development of freezing tolerance, which can be reduced/lost during warm spells (deacclimation) in winters, and attained again during cold spells (reacclimation). We summarize how temperature interacts with components of the light regime (photoperiod, PSII excitation pressure, irradiance, and light quality) in determining changes in the transcriptome, proteome and metabolome.
Collapse
Affiliation(s)
- Mallikarjuna Rao Kovi
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
| |
Collapse
|
17
|
Wingler A, Hennessy D. Limitation of Grassland Productivity by Low Temperature and Seasonality of Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1130. [PMID: 27512406 PMCID: PMC4962554 DOI: 10.3389/fpls.2016.01130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 06/01/2023]
Abstract
The productivity of temperate grassland is limited by the response of plants to low temperature, affecting winter persistence and seasonal growth rates. During the winter, the growth of perennial grasses is restricted by a combination of low temperature and the lack of available light, but during early spring low ground temperature is the main limiting factor. Once temperature increases, growth is stimulated, resulting in a peak in growth in spring before growth rates decline later in the season. Growth is not primarily limited by the ability to photosynthesize, but controlled by active regulatory processes that, e.g., enable plants to restrict growth and conserve resources for cold acclimation and winter survival. An insufficient ability to cold acclimate can affect winter persistence, thereby also reducing grassland productivity. While some mechanistic knowledge is available that explains how low temperature limits plant growth, the seasonal mechanisms that promote growth in response to increasing spring temperatures but restrict growth later in the season are only partially understood. Here, we assess the available knowledge of the physiological and signaling processes that determine growth, including hormonal effects, on cellular growth and on carbohydrate metabolism. Using data for grass growth in Ireland, we identify environmental factors that limit growth at different times of the year. Ideas are proposed how developmental factors, e.g., epigenetic changes, can lead to seasonality of the growth response to temperature. We also discuss perspectives for modeling grass growth and breeding to improve grassland productivity in a changing climate.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth and Environmental Sciences, University College Cork, CorkIreland
| | - Deirdre Hennessy
- Teagasc-The Agriculture and Food Development Authority, Moorepark Animal & Grassland Research and Innovation CentreFermoy, Ireland
| |
Collapse
|