1
|
Bacon EK, Donnelly CG, Finno CJ, Haase B, Velie BD. Exploring the genetic influences on equine analgesic efficacy through genome-wide association analysis of ranked pain responses. Vet J 2025; 312:106347. [PMID: 40216012 DOI: 10.1016/j.tvjl.2025.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Multimodal analgesic administration is a promising strategy for mitigating side effects typically associated with analgesia; nevertheless, variation in analgesic effectiveness still poses a considerable safety concern for both horses and veterinarians. Pharmacogenomic studies have started delving into genetic influences on varying drug effectiveness and related side effects. However, current findings have narrow implications and are limited in their ability to individualize analgesic dosages in horses. Hydromorphone and detomidine were administered to a cohort of 48 horses at standardized time intervals, with dosage rates recorded. Analgesic effectiveness was scored (1-3) based on pain response to dura penetration during cerebrospinal fluid centesis. Genome-wide association (GWA) analyses identified two SNVs passing the nominal significance threshold (P < 1 ×10-5) in association with analgesic effectiveness. One SNV identified on chromosome 27 (rs1142378599) is contained within the LOC100630731 disintegrin and metalloproteinase domain-containing protein 5 gene. The second identified SNV is an intergenic variant located on chromosome 29 (rs3430772468) These SNVs accounted for 26.11 % and 31.72 % of explained variation in analgesic effectiveness respectively, with all eight of the horses with the lowest analgesic effectiveness expressing the A/C genotype at rs3430772468, with six of which also expressing the C/T genotype at rs1142872965. Whilst highlighting the multifactorial nature of analgesic efficacy, this study serves as an important step in the application of genome-wide approaches to better understand genetic factors underpinning commonly observed variation in analgesic effectiveness in horses, with the goal of tailoring analgesic dosage to minimize commonly observed side effects and improve the outcomes of equine pain management.
Collapse
Affiliation(s)
- Elouise K Bacon
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| | - Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithica, NY, 14850, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Bianca Haase
- School of Veterinary Science, University of Sydney, NSW, Australia
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| |
Collapse
|
2
|
Amouzoune M, Rehman S, Benkirane R, Udupa S, Mamidi S, Kehel Z, Al-Jaboobi M, Amri A. Genome wide association study of seedling and adult plant leaf rust resistance in two subsets of barley genetic resources. Sci Rep 2024; 14:15428. [PMID: 38965257 PMCID: PMC11224298 DOI: 10.1038/s41598-024-53149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/29/2024] [Indexed: 07/06/2024] Open
Abstract
Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.
Collapse
Affiliation(s)
- Mariam Amouzoune
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco.
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco.
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
- Field Crop Development Center, The Olds College, Lacombe, AB, T4L 1W8, Canada
| | - Rachid Benkirane
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Sripada Udupa
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Muamer Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| |
Collapse
|
3
|
Kaur G, Toora PK, Tuan PA, McCartney CA, Izydorczyk MS, Badea A, Ayele BT. Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:202. [PMID: 37642745 DOI: 10.1007/s00122-023-04449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
KEY MESSAGE Genome-wide association study of diverse barley genotypes identified loci, single nucleotide polymorphisms and candidate genes that control seed dormancy and therefore enhance resistance to preharvest sprouting. Preharvest sprouting (PHS) causes significant yield and quality loss in barley and it is strongly associated with the level of seed dormancy. This study performed genome-wide association study using a collection of 255 diverse barley genotypes grown over four environments to identify loci controlling dormancy/PHS. Our phenotypic analysis revealed substantial variation in germination index/dormancy levels among the barley genotypes. Marker-trait association and linkage disequilibrium (LD) decay analyses identified 16 single nucleotide polymorphisms (SNPs) and two QTLs associated with dormancy/PHS, respectively, on chromosome 3H and 5H explaining 6.9% to 11.1% of the phenotypic variation. QTL.5H consist of 14 SNPs of which 12 SNPs satisfy the FDR threshold of α = 0.05, and it may represent the SD2 locus. The QTL on 3H consists of one SNP that doesn't satisfy FDR (α = 0.05). Genes harbouring the significant SNPs were analyzed for their expression pattern in the seeds of selected dormant and non-dormant genotypes. Of these genes, HvRCD1, HvPSRP1 and HvF3H exhibited differential expression between the dormant and non-dormant seed samples, suggesting their role in controlling seed dormancy/PHS. Three SNPs located within the differentially expressed genes residing in QTL.5H explained considerable phenotypic variation (≥ 8.6%), suggesting their importance in regulating PHS resistance. Analysis of the SNP marker data in QTL.5H identified a haplotype for PHS resistance. Overall, the study identified loci, SNPs and candidate genes that control dormancy and therefore play important roles in enhancing PHS resistance in barley through marker-assisted breeding.
Collapse
Affiliation(s)
- Gurkamal Kaur
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Marta S Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, R3C 3G8, Canada
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
4
|
Genievskaya Y, Zatybekov A, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci Associated with Powdery Mildew Resistance in Spring Barley under Conditions of Southeastern Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2023; 12:2375. [PMID: 37376001 DOI: 10.3390/plants12122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Barley (Hordeum vulgare L.) is one of the most produced cereal crops in the world. It has traditionally been used for the production of animal feed and for malting, as well as for human consumption. However, its production is highly affected by biotic stress factors, particularly the fungal pathogen Blumeria graminis (DC.) f. sp. hordei (Bgh), which causes powdery mildew (PM). In this study, a collection of 406 barley accessions from the USA, Kazakhstan, Europe, and Africa were assessed for resistance to PM over a 3-year period in southeastern Kazakhstan. The collection was grown in the field in 2020, 2021, and 2022 and was genotyped using the 9K SNP Illumina chip. A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci (QTLs) associated with PM resistance. As a result, seven QTLs for PM resistance were detected on chromosomes 4H, 5H, and 7H (FDR p-values < 0.05). Genetic positions of two QTLs were similar to those of PM resistance QTLs previously reported in the scientific literature, suggesting that the five remaining QTLs are novel putative genetic factors for the studied trait. Haplotype analysis for seven QTLs revealed three haplotypes which were associated with total PM resistance and one haplotype associated with the high PM severity in the barley collection. Identified QTLs and haplotypes associated with the PM resistance of barley may be used for further analysis, trait pyramiding, and marker-assisted selection.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
5
|
Mourad AM, Hamdy RM, Esmail SM. Novel genomic regions on chromosome 5B controlling wheat powdery mildew seedling resistance under Egyptian conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1160657. [PMID: 37235018 PMCID: PMC10208068 DOI: 10.3389/fpls.2023.1160657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Wheat powdery mildew (PM) causes significant yield losses worldwide. None of the Egyptian wheat cultivars was detected to be highly resistant to such a severe disease. Therefore, a diverse spring wheat panel was evaluated for PM seedling resistance using different Bgt conidiospores collected from Egyptian fields in two growing seasons. The evaluation was done in two separate experiments. Highly significant differences were found between the two experiments suggesting the presence of different isolates populations. Highly significant differences were found among the tested genotypes confirming the ability to improve PM resistance using the recent panel. Genome-wide association study (GWAS) was done for each experiment separately and a total of 71 significant markers located within 36 gene models were identified. The majority of these markers are located on chromosome 5B. Haplotype block analysis identified seven blocks containing the significant markers on chromosome 5B. Five gene models were identified on the short arm of the chromosome. Gene enrichment analysis identified five and seven pathways based on the biological process and molecular functions respectively for the detected gene models. All these pathways are associated with disease resistance in wheat. The genomic regions on 5B seem to be novel regions that are associated with PM resistance under Egyptian conditions. Selection of superior genotypes was done and Grecian genotypes seem to be a good source for improving PM resistance under Egyptian conditions.
Collapse
Affiliation(s)
- Amira M.I. Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Rania M. Hamdy
- Food Science and Technology Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
6
|
Ziems LA, Singh L, Dracatos PM, Dieters MJ, Sanchez-Garcia M, Amri A, Verma RPS, Park RF, Singh D. Characterization of Leaf Rust Resistance in International Barley Germplasm Using Genome-Wide Association Studies. PLANTS (BASEL, SWITZERLAND) 2023; 12:862. [PMID: 36840210 PMCID: PMC9963359 DOI: 10.3390/plants12040862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field for resistance to the pathogen Puccinia hordei, the causal agent of barley leaf rust. Multi-pathotype tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene Rph3, followed by Rph2 (4.4%), Rph1 (1.7%), Rph12 (1.7%) or Rph19 (1.7%). Five lines (4.4%) were postulated to carry the gene combinations Rph2+9.am, Rph2+19 and Rph8+19. Three lines (2.6%) were postulated to carry Rph15 based on seedling rust tests and genotyping with a marker linked closely to this gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were identified as carrying APR, and genotyping with molecular markers linked closely to three known APR genes (Rph20, Rph23 and Rph24) revealed that 48 of the 84 genotypes (57.1%) likely carry novel (uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations (Rph20+Rph23, Rph23+Rph24 and Rph20+Rph24), and these lines had higher levels of field resistance compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs; strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL on chromosome 7H had the largest effect on resistance response to P. hordei. Overall, these studies detected several potentially novel genomic regions associated with resistance. The findings provide useful information for breeders to support the utilization of these sources of resistance to diversify resistance to leaf rust in barley and increase resistance durability.
Collapse
Affiliation(s)
- Laura A. Ziems
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Lovepreet Singh
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Peter M. Dracatos
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark J. Dieters
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Miguel Sanchez-Garcia
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
| | - Ahmed Amri
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
| | - Ramesh Pal Singh Verma
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
- Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Robert F. Park
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Davinder Singh
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| |
Collapse
|
7
|
Esmail SM, Omar GE, Mourad AMI. In-Depth Understanding of the Genetic Control of Stripe Rust Resistance ( Puccinia striiformis f. sp. tritici) Induced in Wheat ( Triticum aestivum) by Trichoderma asperellum T34. PLANT DISEASE 2023; 107:457-472. [PMID: 36449539 DOI: 10.1094/pdis-07-22-1593-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat stripe rust (caused by Puccinia striiformis f. tritici Erikss.) causes severe yield losses worldwide. Due to the continuous appearance of new stripe rust races, resistance has been broken in most of the highly resistant genotypes in Egypt and worldwide. Therefore, looking for new ways to resist such a severe disease is urgently needed. Trichoderma asperellum strain T34 has been known as an effective bioagent against many crop diseases. It exists naturally in Egyptian fields. Therefore, in our study, the effectiveness of strain T34 was tested as a bioagent against wheat stripe rust. For this purpose, 198 spring wheat genotypes were tested for their resistance against two different P. striiformis f. tritici populations collected from the Egyptian fields. The most highly aggressive P. striiformis f. tritici population was used to test the effectiveness of strain T34. Highly significant differences were found between strain T34 and stripe rust, suggesting the effectiveness of strain T34 in stripe rust resistance. A genome-wide association study identified 48 gene models controlling resistance under normal conditions and 46 gene models controlling strain T34-induced resistance. Of these gene models, only one common gene model was found, suggesting the presence of two different genetic systems controlling resistance under each condition. The pathways of the biological processes were investigated under both conditions. This study provided in-depth understanding of genetic control and, hence, will accelerate the future of wheat breeding programs for stripe rust resistance.
Collapse
Affiliation(s)
- Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghady E Omar
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Mourad AMI, Draz IS, Omar GE, Börner A, Esmail SM. Genome-Wide Screening of Broad-Spectrum Resistance to Leaf Rust ( Puccinia triticina Eriks) in Spring Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:921230. [PMID: 35812968 PMCID: PMC9258335 DOI: 10.3389/fpls.2022.921230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 06/01/2023]
Abstract
Wheat leaf rust (LR) causes significant yield losses worldwide. In Egypt, resistant cultivars began to lose their efficiency in leaf rust resistance. Therefore, a diverse spring wheat panel was evaluated at the seedling stage to identify new sources of broad-spectrum seedling resistance against the Egyptian Puccinia triticina (Pt) races. In three different experiments, seedling evaluation was done using Pt spores collected from different fields and growing seasons. Highly significant differences were found among experiments confirming the presence of different races population in each experiment. Highly significant differences were found among the tested genotypes confirming the ability to select superior genotypes. Genome-wide association study (GWAS) was conducted for each experiment and a set of 87 markers located within 48 gene models were identified. The identified gene models were associated with disease resistance in wheat. Five gene models were identified to resist all Pt races in at least two experiments and could be identified as stable genes under Egyptian conditions. Ten genotypes from five different countries were stable against all the tested Pt races but showed different degrees of resistance.
Collapse
Affiliation(s)
- Amira M. I. Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Ibrahim S. Draz
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghady E. Omar
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
9
|
Pan Y, Zhu J, Hong Y, Zhang M, Lv C, Guo B, Shen H, Xu X, Xu R. Screening of stable resistant accessions and identification of resistance loci to Barley yellow mosaic virus disease. PeerJ 2022; 10:e13128. [PMID: 35317071 PMCID: PMC8934529 DOI: 10.7717/peerj.13128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background The disease caused by Barley yellow mosaic virus (BaYMV) infection is a serious threat to autumn-sown barley (Hordeum vulgare L.) production in Europe, East Asia and Iran. Due to the rapid diversification of BaYMV strains, it is urgent to discover novel germplasm and genes to assist breeding new varieties with resistance to different BaYMV strains, thus minimizing the effect of BaYMV disease on barley cropping. Methods A natural population consisting of 181 barley accessions with different levels of resistance to BaYMV disease was selected for field resistance identification in two separate locations (Yangzhou and Yancheng, Jiangsu Province, China). Additive main effects and multiplicative interaction (AMMI) analysis was used to identify accessions with stable resistance. Genome-wide association study (GWAS) of BaYMV disease resistance was broadly performed by combining both single nucleotide polymorphisms (SNPs) and specific molecular markers associated with the reported BaYMV disease resistance genes. Furthermore, the viral protein genome linked (VPg) sequences of the virus were amplified and analyzed to assess the differences between the BaYMV strains sourced from the different experimental sites. Results Seven barley accessions with lower standardized Area Under the Disease Progress Steps (sAUDPS) index in every environment were identified and shown to have stable resistance to BaYMV disease in each assessed location. Apart from the reported BaYMV disease resistance genes rym4 and rym5, one novel resistance locus explaining 24.21% of the phenotypic variation was identified at the Yangzhou testing site, while two other novel resistance loci that contributed 19.23% and 19.79% of the phenotypic variation were identified at the Yancheng testing site, respectively. Further analysis regarding the difference in the VPg sequence of the predominant strain of BaYMV collected from these two testing sites may explain the difference of resistance loci differentially identified under geographically distinct regions. Our research provides novel genetic resources and resistance loci for breeding barley varieties for BaMYV disease resistance.
Collapse
Affiliation(s)
- Yuhan Pan
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Juan Zhu
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Yi Hong
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Mengna Zhang
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Chao Lv
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Baojian Guo
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| | - Huiquan Shen
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, Jiangsu, China
| | - Xiao Xu
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, Jiangsu, China
| | - Rugen Xu
- Yangzhou University, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Almerekova S, Genievskaya Y, Abugalieva S, Sato K, Turuspekov Y. Population Structure and Genetic Diversity of Two-Rowed Barley Accessions from Kazakhstan Based on SNP Genotyping Data. PLANTS 2021; 10:plants10102025. [PMID: 34685834 PMCID: PMC8540147 DOI: 10.3390/plants10102025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
The genetic relationship and population structure of two-rowed barley accessions from Kazakhstan were assessed using single-nucleotide polymorphism (SNP) markers. Two different approaches were employed in the analysis: (1) the accessions from Kazakhstan were compared with barley samples from six different regions around the world using 1955 polymorphic SNPs, and (2) 94 accessions collected from six breeding programs from Kazakhstan were studied using 5636 polymorphic SNPs using a 9K Illumina Infinium assay. In the first approach, the neighbor-joining tree showed that the majority of the accessions from Kazakhstan were grouped in a separate subcluster with a common ancestral node; there was a sister subcluster that comprised mainly barley samples that originated in Europe. The Pearson’s correlation analysis suggested that Kazakh accessions were genetically close to samples from Africa and Europe. In the second approach, the application of the STRUCTURE package using 5636 polymorphic SNPs suggested that Kazakh barley samples consisted of five subclusters in three major clusters. The principal coordinate analysis plot showed that, among six breeding origins in Kazakhstan, the Krasnovodopad (KV) and Karaganda (KA) samples were the most distant groups. The assessment of the pedigrees in the KV and KA samples showed that the hybridization schemes in these breeding stations heavily used accessions from Ethiopia and Ukraine, respectively. The comparative analysis of the KV and KA samples allowed us to identify 214 SNPs with opposite allele frequencies that were tightly linked to 60 genes/gene blocks associated with plant adaptation traits, such as the heading date and plant height. The identified SNP markers can be efficiently used in studies of barley adaptation and deployed in breeding projects to develop new competitive cultivars.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (Y.G.); (S.A.)
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (Y.G.); (S.A.)
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (Y.G.); (S.A.)
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (Y.G.); (S.A.)
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Correspondence:
| |
Collapse
|
11
|
Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, Chakraborty S, Bhatt D, Xia X, Steuernagel B, Richardson T, Mago R, Lagudah ES, Patron NJ, Ayliffe M, Rouse MN, Harwood WA, Periyannan S, Steffenson BJ, Wulff BB. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:273-284. [PMID: 32744350 PMCID: PMC7868974 DOI: 10.1111/pbi.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Collapse
Affiliation(s)
- M. Asyraf Md Hatta
- John Innes CentreNorwich Research ParkNorwichUK
- Department of Agriculture TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Sreya Ghosh
- John Innes CentreNorwich Research ParkNorwichUK
| | - Oadi Matny
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichUK
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Evans S. Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Matthew N. Rouse
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
- USDA‐ARS Cereal Disease LaboratorySt. PaulMNUSA
| | | | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Brian J. Steffenson
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
12
|
Abou-Zeid MA, Mourad AMI. Genomic regions associated with stripe rust resistance against the Egyptian race revealed by genome-wide association study. BMC PLANT BIOLOGY 2021; 21:42. [PMID: 33446120 PMCID: PMC7809828 DOI: 10.1186/s12870-020-02813-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat stripe rust (caused by Puccinia striiformis f. sp. Tritici), is a major disease that causes huge yield damage. New pathogen races appeared in the last few years and caused a broke down in the resistant genotypes. In Egypt, some of the resistant genotypes began to be susceptible to stripe rust in recent years. This situation increases the need to produce new genotypes with durable resistance. Besides, looking for a new resistant source from the available wheat genotypes all over the world help in enhancing the breeding programs. RESULTS In the recent study, a set of 103-spring wheat genotypes from different fourteen countries were evaluated to their field resistant to stripe rust for two years. These genotypes included 17 Egyptian genotypes from the old and new cultivars. The 103-spring wheat genotypes were reported to be well adapted to the Egyptian environmental conditions. Out of the tested genotypes, eight genotypes from four different countries were found to be resistant in both years. Genotyping was carried out using genotyping-by-sequencing and a set of 26,703 SNPs were used in the genome-wide association study. Five SNP markers, located on chromosomes 2A and 4A, were found to be significantly associated with the resistance in both years. Three gene models associated with disease resistance and underlying these significant SNPs were identified. One immune Iranian genotype, with the highest number of different alleles from the most resistant Egyptian genotypes, was detected. CONCLUSION the high variation among the tested genotypes in their resistance to the Egyptian stripe rust race confirming the possible improvement of stripe rust resistance in the Egyptian wheat genotypes. The identified five SNP markers are stable and could be used in marker-assisted selection after validation in different genetic backgrounds. Crossing between the immune Iranian genotype and the Egyptian genotypes will improve stripe rust resistance in Egypt.
Collapse
Affiliation(s)
- Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Amira M. I. Mourad
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Kiseleva AA, Leonova IN, Pshenichnikova TA, Salina EA. Dissection of novel candidate genes for grain texture in Russian wheat varieties. PLANT MOLECULAR BIOLOGY 2020; 104:219-233. [PMID: 32617826 DOI: 10.1007/s11103-020-01025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Antonina A Kiseleva
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
| | - Irina N Leonova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Tatyana A Pshenichnikova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Elena A Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| |
Collapse
|
14
|
Yermekbayev K, Griffiths S, Chhetry M, Leverington-Waite M, Orford S, Amalova A, Abugalieva S, Turuspekov Y. Construction of a Genetic Map of RILs Derived from Wheat (T. aestivum L.) Varieties Pamyati Azieva × Paragon Using High-Throughput SNP Genotyping Platform KASP—Kompetitive Allele Specific PCR. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542009015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
16
|
Choudhury S, Larkin P, Xu R, Hayden M, Forrest K, Meinke H, Hu H, Zhou M, Fan Y. Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC Genomics 2019; 20:891. [PMID: 31752676 PMCID: PMC6873737 DOI: 10.1186/s12864-019-6249-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
Background Barley yellow dwarf (BYD) is an important virus disease that causes significant reductions in wheat yield. For effective control of Barley yellow dwarf virus through breeding, the identification of genetic sources of resistance is key to success. In this study, 335 geographically diverse wheat accessions genotyped using an Illumina iSelect 90 K single nucleotide polymorphisms (SNPs) bead chip array were used to identify new sources of resistance to BYD in different environments. Results A genome-wide association study (GWAS) performed using all the generalised and mixed linkage models (GLM and MLM, respectively) identified a total of 36 significant marker-trait associations, four of which were consistently detected in the K model. These four novel quantitative trait loci (QTL) were identified on chromosomes 2A, 2B, 6A and 7A and associated with markers IWA3520, IWB24938, WB69770 and IWB57703, respectively. These four QTL showed an additive effect with the average visual symptom score of the lines containing resistance alleles of all four QTL being much lower than those with less favorable alleles. Several Chinese landraces, such as H-205 (Baimazha) and H-014 (Dahongmai) which have all four favorable alleles, showed consistently higher resistance in different field trials. None of them contained the previously described Bdv2, Bdv3 or Bdv4 genes for BYD resistance. Conclusions This study identified multiple novel QTL for BYD resistance and some resistant wheat genotypes. These will be useful for breeders to generate combinations with and/or without Bdv2 to achieve higher levels and more stable BYD resistance.
Collapse
Affiliation(s)
- Shormin Choudhury
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia.,Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | | | - Rugen Xu
- Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.,Agriculture Victoria Research, AgriBio, 1 Park Drive, Bundoora, Victoria, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, AgriBio, 1 Park Drive, Bundoora, Victoria, Australia
| | - Holger Meinke
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Hongliang Hu
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia.
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia.
| |
Collapse
|
17
|
Characterization of genetic diversity and population structure in wheat using array based SNP markers. Mol Biol Rep 2019; 47:293-306. [PMID: 31630318 DOI: 10.1007/s11033-019-05132-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder's Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon's information index (I) = 0.648, expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.
Collapse
|
18
|
Almerekova S, Sariev B, Abugalieva A, Chudinov V, Sereda G, Tokhetova L, Ortaev A, Tsygankov V, Blake T, Chao S, Genievskaya Y, Abugalieva S, Turuspekov Y. Association mapping for agronomic traits in six-rowed spring barley from the USA harvested in Kazakhstan. PLoS One 2019; 14:e0221064. [PMID: 31404111 PMCID: PMC6690582 DOI: 10.1371/journal.pone.0221064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022] Open
Abstract
In barley, six-rowed barley is advantageous over two-rowed barley for feed due to the larger number of seeds per spike and the higher seed protein content. The growth of six-rowed barley is potentially important for breeding in agriculturally oriented countries, such as Kazakhstan. Nevertheless, until recently, very little attention was given to six-rowed barley in breeding projects in Kazakhstan, one of the largest countries in the world. In this study, phenotyping and single nucleotide polymorphism (SNP) genotyping data were generated from 275 accessions originating from six different breeding organizations in the USA as well as 9 accessions from Kazakhstan in field trials at six breeding institutions. The USA six-rowed barley was tested in comparison to local accessions over three years (2009–2011) based on analyses of key agronomic traits. It was determined that the average yield in the USA accessions in comparison to local lines showed heavier yield in all six tested sites. Principal Coordinate Analysis based on 1618 polymorphic SNP markers separated Kazakh lines from six USA barley origin groups based on PC1 (77.9%), and Montana lines from the remaining five USA groups based on PC2 (15.1%). A genome-wide association study based on eighteen field trials allowed the identification of 47 stable marker-trait associations (MTA) for ten agronomic traits, including key yield related characters such as yield per square meter, thousand grain weight, number of kernels per spike, and productive tillers. The comparison of chromosomal positions of identified MTA with positions of known genes and quantitative trait loci suggests that 25 out of those 47 MTAs are presumably novel. The analysis of 42 SNPs associated with 47 MTAs in the Ensemble genome annotation system (http://ensemblgenomes.org) suggested that 40 SNPs were in genic positions of the genome, as their sequences successfully aligned with corresponding Gen ID.
Collapse
Affiliation(s)
| | - Burabai Sariev
- Kazakh Research Institute of Agriculture and Plant Industry, Almalybak, Almaty region, Kazakhstan
| | - Aigul Abugalieva
- Kazakh Research Institute of Agriculture and Plant Industry, Almalybak, Almaty region, Kazakhstan
| | | | - Grigoriy Sereda
- Karaganda Breeding Station, Tsentralnoe, Karaganda region, Kazakhstan
| | | | - Anarbai Ortaev
- Krasnovodopad Breeding Station, Sarkyrama, Turkestan region, Kazakhstan
| | | | - Thomas Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States of America
| | - Shiaoman Chao
- USDA-ARS Biosciences Research Lab, Fargo, ND, United States of America
| | | | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Department of Biodiversity and Bioresources, Almaty, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Department of Biodiversity and Bioresources, Almaty, Kazakhstan
- * E-mail:
| |
Collapse
|
19
|
Alipour H, Bai G, Zhang G, Bihamta MR, Mohammadi V, Peyghambari SA. Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. PLoS One 2019; 14:e0208614. [PMID: 30615624 PMCID: PMC6322752 DOI: 10.1371/journal.pone.0208614] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
Genotyping-by-sequencing (GBS) provides high SNP coverage and has recently emerged as a popular technology for genetic and breeding applications in bread wheat (Triticum aestivum L.) and many other plant species. Although GBS can discover millions of SNPs, a high rate of missing data is a major concern for many applications. Accurate imputation of those missing data can significantly improve the utility of GBS data. This study compared imputation accuracies among four genome references including three wheat references (Chinese Spring survey sequence, W7984, and IWGSC RefSeq v1.0) and one barley reference genome by comparing imputed data derived from low-depth sequencing to actual data from high-depth sequencing. After imputation, the average number of imputed data points was the highest in the B genome (~48.99%). The D genome had the lowest imputed data points (~15.02%) but the highest imputation accuracy. Among the four reference genomes, IWGSC RefSeq v1.0 reference provided the most imputed data points, but the lowest imputation accuracy for the SNPs with < 10% minor allele frequency (MAF). The W7984 reference, however, provided the highest imputation accuracy for the SNPs with < 10% MAF.
Collapse
Affiliation(s)
- Hadi Alipour
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, United States of America
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Seyed Ali Peyghambari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
20
|
Wong J, Mudd EA, Hayes A, Day A. The chloroplast genome sequence of the ornamental plant Petunia hybrida. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1547136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jerry Wong
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Elisabeth A. Mudd
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Andrew Hayes
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Anil Day
- School of Biological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA. PLoS One 2018; 13:e0205421. [PMID: 30308008 PMCID: PMC6181366 DOI: 10.1371/journal.pone.0205421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
In this study, phenotyping and single nucleotide polymorphism (SNP) genotyping data of 272 accessions of two-rowed spring barley from the USA along with 94 accessions from Kazakhstan were assessed in field trials at six breeding organizations in Kazakhstan to evaluate the performance of the USA samples over three years (2009-2011). The average grain yield over the six locations was not significantly higher in Kazakh accessions in comparison to the USA samples. Twenty four samples from Montana, Washington, the USDA station in Aberdeen Idaho, and the Anheuser-Busch breeding programs showed heavier average yield than the local standard cultivar "Ubagan". Principal Coordinate analysis based on two sets of SNP data suggested that Kazakh accessions were closest to the USA accessions among eight groups of samples from different parts of the World, and within five US barley origin groups the samples from Montana and Washington perfectly matched six groups of Kazakh breeding origins. A genome-wide association study (GWAS) using data from eighteen field trials allowed the identification of ninety one marker-trait associations (MTA) in two or more environments for nine traits, including key characters such as heading time (HT), number of kernels per spike (NKS), and thousand grain weight (TGW). Our GWAS allowed the identification of eight MTA for HT and NKS, and sixteen MTA for TGW, when those MTA were linked to mapped SNPs. Based on comparisons of chromosomal positions of MTA identified in this study, and positions of known genes and quantitative trait loci for HT, NKS and TGW, it was suggested that MTA for HT on chromosome 2H (at 158.2 cM, 11_21414), MTA for NKS on 5H (at 118.6 cM, 11_20298), and two MTA for TGW on chromosome 4H (at 94.7 cM, 12_30718, and at 129.3 cM, 11_20013) were potentially new associations in barley. GWAS suggested that six MTA for HT, including two on chromosome 1H, two on chromosome 3H, and one each on chromosomes 4H and 6H, had useful pleiotropic effects for improving barley spike traits.
Collapse
|
22
|
Case AJ, Bhavani S, Macharia G, Pretorius Z, Coetzee V, Kloppers F, Tyagi P, Brown-Guedira G, Steffenson BJ. Mapping adult plant stem rust resistance in barley accessions Hietpas-5 and GAW-79. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2245-2266. [PMID: 30109391 DOI: 10.1007/s00122-018-3149-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Key message Major stem rust resistance QTLs proposed to be Rpg2 from Hietpas-5 and Rpg3 from GAW-79 were identified in chromosomes 2H and 5H, respectively, and will enhance the diversity of stem rust resistance in barley improvement programs. Stem rust is a devastating disease of cereal crops worldwide. In barley (Hordeum vulgare ssp. vulgare), the disease is caused by two pathogens: Puccinia graminis f. sp. secalis (Pgs) and Puccinia graminis f. sp. tritici (Pgt). In North America, the stem rust resistance gene Rpg1 has protected barley from serious losses for more than 60 years; however, widely virulent Pgt races from Africa in the Ug99 group threaten the crop. The accessions Hietpas-5 (CIho 7124) and GAW-79 (PI 382313) both possess moderate-to-high levels of adult plant resistance to stem rust and are the sources of the resistance genes Rpg2 and Rpg3, respectively. To identify quantitative trait loci (QTL) for stem rust resistance in Hietpas-5 and GAW-79, two biparental populations were developed with Hiproly (PI 60693), a stem rust-susceptible accession. Both populations were phenotyped to the North American Pgt races of MCCFC, QCCJB, and HKHJC in St. Paul, Minnesota, and to African Pgt races (predominately TTKSK in the Ug99 group) in Njoro, Kenya. In the Hietpas-5/Hiproly population, a major effect QTL was identified in chromosome 2H, which is proposed as the location for Rpg2. In the GAW-79/Hiproly population, a major effect QTL was identified in chromosome 5H and is the proposed location for Rpg3. These QTLs will enhance the diversity of stem rust resistance in barley improvement programs.
Collapse
Affiliation(s)
- Austin J Case
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Sridhar Bhavani
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Nairobi, Kenya
| | - Godwin Macharia
- Kenya Agriculture and Livestock Research Organization (KALRO), Njoro, Kenya
| | - Zacharias Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein, Republic of South Africa
| | - Vicky Coetzee
- Pannar Seed (Pyt) Ltd, Greytown, Republic of South Africa
| | | | - Priyanka Tyagi
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
23
|
Case AJ, Bhavani S, Macharia G, Steffenson BJ. Genome-wide association study of stem rust resistance in a world collection of cultivated barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:107-126. [PMID: 29177535 DOI: 10.1007/s00122-017-2989-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 05/20/2023]
Abstract
QTL conferring a 14-40% reduction in adult plant stem rust severity to multiple races of Pgt were found on chromosome 5H and will be useful in barley breeding. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is an important disease of barley. The resistance gene Rpg1 has protected the crop against stem rust losses for over 70 years in North America, but is not effective against the African Pgt race TTKSK (and its variants) nor the domestic race QCCJB. To identify resistance to these Rpg1-virulent races, the Barley iCore Collection, held by the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection was evaluated for adult plant resistance (APR) and seedling resistance to race TTKSK and APR to race QCCJB and the Pgt TTKSK composite of races TTKSK, TTKST, TTKTK, and TTKTT. Using a genome-wide association study approach based on 6224 single nucleotide polymorphic markers, seven significant loci for stem rust resistance were identified on chromosomes 1H, 2H, 3H, and 5H. The most significant markers detected were 11_11355 and SCRI_RS_177017 at 71-75 cM on chromosome 5H, conferring APR to QCCJB and TTKSK composite. Significant markers were also detected for TTKSK seedling resistance on chromosome 5H. All markers detected on 5H were independent of the rpg4/Rpg5 complex at 152-168 cM. This study verified the importance of the 11_11355 locus in conferring APR to races QCCJB and TTKSK and suggests that it may be effective against other races in the Ug99 lineage.
Collapse
Affiliation(s)
- Austin J Case
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Sridhar Bhavani
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Nairobi, Kenya
| | - Godwin Macharia
- Kenya Agriculture Livestock Research Organization (KALRO), Njoro, Kenya
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
24
|
Vásquez AX, Soto Sedano JC, López Carrascal CE. Unraveling the molecules hidden in the gray shadows of quantitative disease resistance to pathogens. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n1.66487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Una de las preguntas más desafiantes del fitomejoramiento y de la fitopatología molecular es ¿cuáles son las bases genéticas y moleculares de la resistencia cuantitativa a enfermedades?. El escaso conocimiento de cómo este tipo de resistencia funciona ha obstaculizado que los fitomejoradores la aprovecharlo plenamente. Para superar estos obstáculos se han desarrollado nuevas metodologías para el estudio de rasgos cuantitativos. Los enfoques como el mapeo genético, la identificación de loci de rasgos cuantitativos (QTL) y el mapeo por asociaciones, incluyendo el enfoque de genes candidatos y los estudios de asociación amplia del genoma, se han llevado a cabo históricamente para describir rasgos cuantitativos y por lo tanto para estudiar QDR. Además, se han proporcionado grandes avances en la obtención de datos fenotípicos cuantitativos para mejorar estos análisis. Recientemente, algunos genes asociados a QDR han sido clonados, lo que conduce a nuevas hipótesis sobre las bases moleculares de este tipo de resistencia. En esta revisión presentamos los avances más recientes sobre QDR y la correspondiente aplicación, que han permitido postular nuevas ideas que pueden ayudar a construir nuevos modelos. Algunas de las hipótesis presentadas aquí como posibles explicaciones para QDR están relacionadas con el nivel de expresión y el splicing alternativo de algunos genes relacionados con la defensa, la acción de "alelos débiles" de genes R, la presencia de variantes alélicas en los genes implicados en la respuesta de defensa y un papel central de quinasas o pseudoqinasas. Con la información recapitulada en esta revisión es posible concluir que la distinción conceptual entre resistencia cualitativa y cuantitativa puede ser cuestionada ya que ambos comparten importantes componentes.
Collapse
|
25
|
Alipour H, Bihamta MR, Mohammadi V, Peyghambari SA, Bai G, Zhang G. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1293. [PMID: 28912785 PMCID: PMC5583605 DOI: 10.3389/fpls.2017.01293] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/07/2017] [Indexed: 05/22/2023]
Abstract
Background: Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently, genotyping-by-sequencing (GBS), a next-generation sequencing (NGS) technology that can simplify complex genomes, has now be used as a high-throughput and cost-effective molecular tool for routine breeding and screening in many crop species, including the species with a large genome. Results: We genotyped a diversity panel of 369 Iranian hexaploid wheat accessions including 270 landraces collected between 1931 and 1968 in different climate zones and 99 cultivars released between 1942 to 2014 using 16,506 GBS-based single nucleotide polymorphism (GBS-SNP) markers. The B genome had the highest number of mapped SNPs while the D genome had the lowest on both the Chinese Spring and W7984 references. Structure and cluster analyses divided the panel into three groups with two landrace groups and one cultivar group, suggesting a high differentiation between landraces and cultivars and between landraces. The cultivar group can be further divided into four subgroups with one subgroup was mostly derived from Iranian ancestor(s). Similarly, landrace groups can be further divided based on years of collection and climate zones where the accessions were collected. Molecular analysis of variance indicated that the genetic variation was larger between groups than within group. Conclusion: Obvious genetic diversity in Iranian wheat was revealed by analysis of GBS-SNPs and thus breeders can select genetically distant parents for crossing in breeding. The diverse Iranian landraces provide rich genetic sources of tolerance to biotic and abiotic stresses, and they can be useful resources for the improvement of wheat production in Iran and other countries.
Collapse
Affiliation(s)
- Hadi Alipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia UniversityUrmia, Iran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
- Agronomy Department, Kansas State University, ManhattanKS, United States
| | - Mohammad R. Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Seyed A. Peyghambari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of TehranKaraj, Iran
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, ManhattanKS, United States
| | - Guorong Zhang
- Agronomy Department, Kansas State University, ManhattanKS, United States
| |
Collapse
|
26
|
Genissel A, Confais J, Lebrun MH, Gout L. Association Genetics in Plant Pathogens: Minding the Gap between the Natural Variation and the Molecular Function. FRONTIERS IN PLANT SCIENCE 2017; 8:1301. [PMID: 28791038 PMCID: PMC5524819 DOI: 10.3389/fpls.2017.01301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/11/2017] [Indexed: 05/05/2023]
|
27
|
Bartoli C, Roux F. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:763. [PMID: 28588588 PMCID: PMC5441063 DOI: 10.3389/fpls.2017.00763] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA) mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes). In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.
Collapse
|