1
|
Meng Y, Li X, Zhang H, Yu Z, Zhang Z, Fan Y, Yan L. Research on the mining of candidate genes for pepper fruit color and development of SNP markers based on SLAF-seq technology. Sci Rep 2025; 15:11392. [PMID: 40181030 PMCID: PMC11968913 DOI: 10.1038/s41598-025-95552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
This study aims to enhance the coloration of pepper fruit by identifying valuable genetic resources through the analysis of single nucleotide polymorphism (SNP). markers and candidate genes associated with fruit pigmentation. Utilizing 197 natural populations of both hot and sweet peppers, we employed specific-locus amplified fragment sequencing (SLAF-seq) to examine 1496 high-quality SNP markers, thereby identifying significant loci contributing to fruit color variation. Our genome-wide association study pinpointed 30 significant SNP sites located on chromosome 6. Further analysis using kompetitive allele-specific PCR(KASP) and phenotypic correlation with fruit color led to the identification of the CA.PGAv.1.6.scaffold919.44 gene, which is implicated in anthocyanin synthesisregulation via the NAC domain, thereby influencing pepper fruit coloration. These findings offer a valuable reference for the advancement of molecular-assisted breeding strategies aimed at improving the fruit color of both sweet and hot peppers.To improve the fruit color of sweet peppers, this study aimed to identify single nucleotide polymorphism (SNP) loci and candidate genes significantly associated with fruit color. A natural population of 197 sweet pepper accessions was used as the material. SLAF-seq was conducted with 1496 high-quality SNP markers to mine excellent variant loci and predict candidate genes. Through Manhattan plot analysis and association analysis with the best linear unbiased prediction (BLUP) values of fruit color, 30 significant loci were detected on chromosome 6. Combining KASP genotyping technology with field phenotypes, the gene CAPGAv.1.6.scaffold919.44 was identified as a candidate gene regulating mature fruit color. It is related to the NAC domain and is hypothesized to alter fruit color by regulating anthocyanin biosynthesis. This study lays the foundation for molecular-assisted breeding of sweet peppers related to fruit color.
Collapse
Affiliation(s)
- Yaning Meng
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xinxin Li
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hongxiao Zhang
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Zhanghong Yu
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhe Zhang
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Yanqin Fan
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Libin Yan
- Institute of Economic Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- Hebei Province Engineering Research Center for Vegetables, Shijiazhuang, China.
| |
Collapse
|
2
|
Noman A, Alwutayd KM, Aqeel M, Hussain A, Qasim M, Al-Qthanin RN, Alshaharni MO, Alzuaibr FM, Alomran MM. Pepper defense against Ralstonia solanacearum and High-temperature stress is positively regulated by CaMYB59. Microb Pathog 2024; 189:106599. [PMID: 38428471 DOI: 10.1016/j.micpath.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
We have functionally evaluated a transcription factor CaMYB59 for its role in pepper immune responses to Ralstonia solanacearum attack and high temperature-high humidity (HTHH). Exposure to R. solanacearum inoculation (RSI) and HTHH resulted in up-regulation of this nucleus-localized TF. Function of this TF was confirmed by performing loss of function assay of CaMYB59 by VIGS (virus-induced gene silencing). Plants with silenced CaMYB59 displayed not only compromised pepper immunity against RSI but also impaired tolerance to HTHH along with decreased hypersensitive response (HR). This impairment in defense function was fully linked with low induction of stress-linked genes like CaPO2, CaPR1, CaAcc and thermo-tolerance linked CaHSP24 as well as CaHsfB2a. Conversely, transient overexpression of CaMYB59 enhanced pepper immunity. This reveals that CaMYB59 positively regulated host defense against RSI and HTHH by means of HR like mimic cell death, H2O2 production and up-regulation of defense as well as thermo-tolerance associated genes. These changes in attributes collectively confirm the role of CaMYB59 as a positive regulator of pepper immunity against R. solanacearum. We recommend that such positive regulation of pepper defense is dynamically supported by phyto-hormone signaling and transcriptional web of defense genes. These integrated and interlinked events stabilize plant growth and survival under abiotic and biotic stresses.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Ansar Hussain
- Department of Plant breeding and Genetics, Ghazi University, DG Khan, Pakistan
| | - Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, PR China
| | - Rahmah N Al-Qthanin
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
3
|
Zhang C, Xie Y, He P, Shan L. Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:73-83. [PMID: 38416059 DOI: 10.1094/mpmi-10-23-0177-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
4
|
Zhang D, Li H, Liu G, Xie L, Feng G, Xu X. Mapping of the Cladosporium fulvum resistance gene Cf-16, a major gene involved in leaf mold disease in tomato. Front Genet 2023; 14:1219898. [PMID: 37576557 PMCID: PMC10415096 DOI: 10.3389/fgene.2023.1219898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Tomato (Solanum lycopersicum) is widely cultivated and consumed worldwide. Tomato leaf mold, caused by Cladosporium fulvum, is one of the most devastating diseases in tomato production. At present, some tomato leaf mold resistance (Cf series) genes used in production gradually lose resistance due to the continuous and rapid differentiation of C. fulvum physiological races. The Cf-16 gene derived from the "Ontario7816" tomato cultivar has shown effective resistance in field trials for many years, but few studies have reported on the mapping of the Cf-16 gene, which has not been cloned, limiting its utilization in tomato breeding. Here, we mapped Cf-16 using a novel comprehensive strategy including bulk segregation analysis (BSA), genome resequencing and SSR molecular markers. A genetic analysis revealed that Cf-16 resistance in "Ontario7816" is controlled by one major dominant locus. The Cf-16 gene was mapped in a region of 2.6 cM at chromosome 6 between two markers, namely, TGS447 and TES312, by using an F2 population from a cross between the resistant cultivar "Ontario7816" and susceptible line "Moneymaker." Two nucleotide-binding-site-leucine-rich repeat (NBS-LRR) resistance genes, namely, XM_004240667.3 and XM_010323727.1, were identified in this interval. They are strong candidates for the Cf-16 gene. The mapping of Cf-16 may speed up its utilization for breeding resistant tomato varieties and represents an important step forward in our understanding of the mechanism underlying resistance to tomato leaf mold.
Collapse
Affiliation(s)
- Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Huijia Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Libo Xie
- Horticultural Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guojun Feng
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Liu G, Liu F, Zhang D, Zhao T, Yang H, Jiang J, Li J, Zhang H, Xu X. Integrating omics reveals that miRNA-guided genetic regulation on plant hormone level and defense response pathways shape resistance to Cladosporium fulvum in the tomato Cf-10-gene-carrying line. Front Genet 2023; 14:1158631. [PMID: 37303956 PMCID: PMC10248068 DOI: 10.3389/fgene.2023.1158631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Invasion of C. fulvum causes the most serious diseases affecting the reproduction of tomatoes. Cf-10-gene-carrying line showed remarkable resistance to Cladosporium fulvum. To exploit its defense response mechanism, we performed a multiple-omics profiling of Cf-10-gene-carrying line and a susceptible line without carrying any resistance genes at non-inoculation and 3 days post-inoculation (dpi) of C. fulvum. We detected 54 differentially expressed miRNAs (DE-miRNAs) between the non-inoculation and 3 dpi in the Cf-10-gene-carrying line, which potentially regulated plant-pathogen interaction pathways and hormone signaling pathways. We also revealed 3,016 differentially expressed genes (DEGs) between the non-inoculated and 3 dpi in the Cf-10-gene-carrying line whose functions enriched in pathways that were potentially regulated by the DE-miRNAs. Integrating DE-miRNAs, gene expression and plant-hormone metabolites indicated a regulation network where the downregulation of miRNAs at 3 dpi activated crucial resistance genes to trigger host hypersensitive cell death, improved hormone levels and upregulated the receptors/critical responsive transcription factors (TFs) of plant hormones, to shape immunity to the pathogen. Notably, our transcriptome, miRNA and hormone metabolites profiling and qPCR analysis suggested that that the downregulation of miR9472 potentially upregulated the expression of SAR Deficient 1 (SARD1), a key regulator for ICS1 (Isochorismate Synthase 1) induction and salicylic acid (SA) synthesis, to improve the level of SA in the Cf-10-gene-carrying line. Our results exploited potential regulatory network and new pathways underlying the resistance to C. fulvum in Cf-10-gene-carrying line, providing a more comprehensive genetic circuit and valuable gene targets for modulating resistance to the virus.
Collapse
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Fengjiao Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
PNGSeqR: An R Package for Rapid Candidate Gene Selection through Pooled Next-Generation Sequencing. PLANTS 2022; 11:plants11141821. [PMID: 35890455 PMCID: PMC9315718 DOI: 10.3390/plants11141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Although bulked segregant analysis (BSA) has been used extensively in genetic mapping, user-friendly tools which can integrate current algorithms for researchers with no background in bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of genome-wide signals, and rapidly defines the candidate region through the permutation test and fractile quantile. Users can choose the analysis methods according to their data and experimental design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently be exported.
Collapse
|
8
|
Transcriptome Analysis of the Cf-13-Mediated Hypersensitive Response of Tomato to Cladosporium fulvum Infection. Int J Mol Sci 2022; 23:ijms23094844. [PMID: 35563232 PMCID: PMC9102077 DOI: 10.3390/ijms23094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato leaf mold disease caused by Cladosporium fulvum (C. fulvum) is one of the most common diseases affecting greenhouse tomato production. Cf proteins can recognize corresponding AVR proteins produced by C. fulvum, and Cf genes are associated with leaf mold resistance. Given that there are many physiological races of C. fulvum and that these races rapidly mutate, resistance to common Cf genes (such as Cf-2, Cf-4, Cf-5, and Cf-9) has decreased. In the field, Ont7813 plants (carrying the Cf-13 gene) show effective resistance to C. fulvum; thus, these plants could be used as new, disease-resistant materials. To explore the mechanism of the Cf-13-mediated resistance response, transcriptome sequencing was performed on three replicates each of Ont7813 (Cf-13) and Moneymaker (MM; carrying the Cf-0 gene) at 0, 9, and 15 days after inoculation (dai) for a total of 18 samples. In total, 943 genes were differentially expressed, specifically in the Ont7813 response process as compared to the Moneymaker response process. Gene ontology (GO) classification of these 943 differentially expressed genes (DEGs) showed that GO terms, including "hydrogen peroxide metabolic process (GO_Process)", "secondary active transmembrane transporter activity (GO_Function)", and "mismatch repair complex (GO_Component)", which were the same as 11 other GO terms, were significantly enriched. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many key regulatory genes of the Cf-13-mediated resistance response processes were involved in the "plant hormone signal transduction" pathway, the "plant-pathogen interaction" pathway, and the "MAPK signaling pathway-plant" pathway. Moreover, during C. fulvum infection, jasmonic acid (JA) and salicylic acid (SA) contents significantly increased in Ont7813 at the early stage. These results lay a vital foundation for further understanding the molecular mechanism of the Cf-13 gene in response to C. fulvum infection.
Collapse
|
9
|
Li Z, Xu Y. Bulk segregation analysis in the NGS era: a review of its teenage years. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1355-1374. [PMID: 34931728 DOI: 10.1111/tpj.15646] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bulk segregation analysis (BSA) utilizes a strategy of pooling individuals with extreme phenotypes to conduct economical and rapidly linked marker screening or quantitative trait locus (QTL) mapping. With the development of next-generation sequencing (NGS) technology in the past 10 years, BSA methods and technical systems have been gradually developed and improved. At the same time, the ever-decreasing costs of sequencing accelerate NGS-based BSA application in different species, including eukaryotic yeast, grain crops, economic crops, horticultural crops, trees, aquatic animals, and insects. This paper provides a landscape of BSA methods and reviews the BSA development process in the past decade, including the sequencing method for BSA, different populations, different mapping algorithms, associated region threshold determination, and factors affecting BSA mapping. Finally, we summarize related strategies in QTL fine mapping combining BSA.
Collapse
Affiliation(s)
- Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| |
Collapse
|
10
|
Zhao X, Jing Y, Luo Z, Gao S, Teng W, Zhan Y, Qiu L, Zheng H, Li W, Han Y. GmST1, which encodes a sulfotransferase, confers resistance to soybean mosaic virus strains G2 and G3. PLANT, CELL & ENVIRONMENT 2021; 44:2777-2792. [PMID: 33866595 DOI: 10.1111/pce.14066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Soybean mosaic virus (SMV) is one of the most widespread and devastating viral diseases worldwide. The genetic architecture of qualitative resistance to SMV in soybean remains unclear. Here, the Rsvg2 locus was identified as underlying soybean resistance to SMV by genome-wide association and linkage analyses. Fine mapping results showed that soybean resistance to SMV strains G2 and G3 was controlled by a single dominant gene, GmST1, on chromosome 13, encoding a sulfotransferase (SOT). A key variation at position 506 in the coding region of GmST1 associated with the structure of the encoded SOT and changed SOT activity levels between RSVG2-S and RSVG2-R alleles. In RSVG2-S allele carrier "Hefeng25", the overexpression of GmST1 carrying the RSVG2-R allele from the SMV-resistant line "Dongnong93-046" conferred resistance to SMV strains G2 and G3. Compared to Hefeng25, the accumulation of SMV was decreased in transgenic plants carrying the RSVG2-R allele. SMV infection differentiated both the accumulation of jasmonates and expression patterns of genes involved in jasmonic acid (JA) signalling, biosynthesis and catabolism in RSVG2-R and RSVG2-S allele carriers. This characterization of GmST1 suggests a new scenario explaining soybean resistance to SMV.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yan Jing
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Zhenghui Luo
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Sainan Gao
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, Chen Q, Wang H. Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:703011. [PMID: 34691091 PMCID: PMC8531640 DOI: 10.3389/fpls.2021.703011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Cotton is a globally important cash crop. Verticillium wilt (VW) is commonly known as "cancer" of cotton and causes serious loss of yield and fiber quality in cotton production around the world. Here, we performed a BSA-seq analysis using an F2:3 segregation population to identify the candidate loci involved in VW resistance. Two QTLs (qvw-D05-1 and qvw-D05-2) related to VW resistance in cotton were identified using two resistant/susceptible bulks from the F2 segregation population constructed by crossing the resistant cultivar ZZM2 with the susceptible cultivar J11. A total of 30stop-lost SNPs and 42 stop-gained SNPs, which included 17 genes, were screened in the qvw-D05-2 region by SnpEff analysis. Further analysis of the transcriptome data and qRT-PCR revealed that the expression level of Ghir_D05G037630 (designated as GhDRP) varied significantly at certain time points after infection with V. dahliae. The virus-induced gene silencing of GhDRP resulted in higher susceptibility of the plants to V. dahliae than the control, suggesting that GhDRP is involved in the resistance to V. dahlia infection. This study provides a method for rapid mining of quantitative trait loci and screening of candidate genes, as well as enriches the genomic information and gene resources for the molecular breeding of disease resistance in cotton.
Collapse
Affiliation(s)
- Yanli Cui
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Yunlei Zhao,
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- Quanjia Chen,
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hongmei Wang,
| |
Collapse
|
12
|
Bai H, Song Z, Zhang Y, Li Z, Wang Y, Liu X, Ma J, Quan J, Wu X, Liu M, Zhou J, Dong Z, Li D. The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1911-1926. [PMID: 32157354 DOI: 10.1007/s00122-020-03566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/15/2020] [Indexed: 05/20/2023]
Abstract
The bHLH transcription factor, PPLS1, interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet (Setaria italica). Foxtail millet (Setaria italica), a self-pollinated crop with numerous small florets, is difficult for cross-pollination. The color of pulvinus and leaf sheath with purple being dominant to green is an indicative character and often used for screening authentic hybrids in foxtail millet crossing. Deciphering molecular mechanism controlling this trait would greatly facilitate genetic improvement of cultivars in foxtail millet. Here, using the F2 bulk specific-locus amplified fragment sequencing approach, we mapped the putative causal gene for the purple color of pulvinus and leaf sheath (PPLS) trait to a 100 Kb region on chromosome 7. Expression analyses of the 15 genes in this region revealed that Seita.7G195400 (renamed here as PPLS1) was differentially expressed between purple and green cultivars. PPLS1 encodes a bHLH transcription factor and is localized in the nucleus with a transactivation activity. Furthermore, we observed that expression of a MYB transcription factor gene, SiMYB85 (Seita.4G086300) involved in anthocyanin biosynthesis, shows a totally positive association with that of PPLS1. Heterologous co-expression of both PPLS1 and SiMYB85 in tobacco leaves led to elevated anthocyanin accumulation and expression of some anthocyanin-related genes. Furthermore, PPLS1 physically interacts with SiMYB85. Taken together, our results suggest that PPLS1 interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet.
Collapse
Affiliation(s)
- Hui Bai
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Zhenjun Song
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyong Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Yongfang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Xue Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Jifang Ma
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Jianzhang Quan
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Xianghong Wu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- College of Life Sciences, Nankai University, Tianjin, 300071, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhiping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China.
| | - Dayong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China.
| |
Collapse
|
13
|
Iakovidis M, Soumpourou E, Anderson E, Etherington G, Yourstone S, Thomas C. Genes Encoding Recognition of the Cladosporium fulvum Effector Protein Ecp5 Are Encoded at Several Loci in the Tomato Genome. G3 (BETHESDA, MD.) 2020; 10:1753-1763. [PMID: 32209596 PMCID: PMC7202015 DOI: 10.1534/g3.120.401119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
The molecular interactions between tomato and Cladosporium fulvum have been an important model for molecular plant pathology. Complex genetic loci on tomato chromosomes 1 and 6 harbor genes for resistance to Cladosporium fulvum, encoding receptor like-proteins that perceive distinct Cladosporium fulvum effectors and trigger plant defenses. Here, we report classical mapping strategies for loci in tomato accessions that respond to Cladosporium fulvum effector Ecp5, which is very sequence-monomorphic. We screened 139 wild tomato accessions for an Ecp5-induced hypersensitive response, and in five accessions, the Ecp5-induced hypersensitive response segregated as a monogenic trait, mapping to distinct loci in the tomato genome. We identified at least three loci on chromosomes 1, 7 and 12 that harbor distinct Cf-Ecp5 genes in four different accessions. Our mapping showed that the Cf-Ecp5 in Solanum pimpinellifolium G1.1161 is located at the Milky Way locus. The Cf-Ecp5 in Solanum pimpinellifolium LA0722 was mapped to the bottom arm of chromosome 7, while the Cf-Ecp5 genes in Solanum lycopersicum Ontario 7522 and Solanum pimpinellifolium LA2852 were mapped to the same locus on the top arm of chromosome 12. Bi-parental crosses between accessions carrying distinct Cf-Ecp5 genes revealed putative genetically unlinked suppressors of the Ecp5-induced hypersensitive response. Our mapping also showed that Cf-11 is located on chromosome 11, close to the Cf-3 locus. The Ecp5-induced hypersensitive response is widely distributed within tomato species and is variable in strength. This novel example of convergent evolution could be used for choosing different functional Cf-Ecp5 genes according to individual plant breeding needs.
Collapse
Affiliation(s)
- Michail Iakovidis
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Eleni Soumpourou
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Elisabeth Anderson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - Scott Yourstone
- Department of Biological Sciences, University of North Carolina at Chapel Hill, NC, 27510
| | - Colwyn Thomas
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
14
|
Zhang D, Bao Y, Sun Y, Yang H, Zhao T, Li H, Du C, Jiang J, Li J, Xie L, Xu X. Comparative transcriptome analysis reveals the response mechanism of Cf-16-mediated resistance to Cladosporium fulvum infection in tomato. BMC PLANT BIOLOGY 2020; 20:33. [PMID: 31959099 PMCID: PMC6971981 DOI: 10.1186/s12870-020-2245-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Leaf mold disease caused by Cladosporium fulvum is a serious threat affecting the global production of tomato. Cf genes are associated with leaf mold resistance, including Cf-16, which confers effective resistance to leaf mold in tomato. However, the molecular mechanism of the Cf-16-mediated resistance response is largely unknown. RESULTS We performed a comparative transcriptome analysis of C. fulvum-resistant (cv. Ontario7816) and C. fulvum-susceptible (cv. Moneymaker) tomato cultivars to identify differentially expressed genes (DEGs) at 4 and 8 days post inoculation (dpi) with C. fulvum. In total, 1588 and 939 more DEGs were found in Cf-16 tomato than in Moneymaker at 4 and 8 dpi, respectively. Additionally, 1350 DEGs were shared between the 4- and 8-dpi Cf-16 groups, suggesting the existence of common core DEGs in response to C. fulvum infection. The up-regulated DEGs in Cf-16 tomato were primarily associated with defense processes and phytohormone signaling, including salicylic acid (SA) and jasmonic acid (JA). Moreover, SA and JA levels were significantly increased in Cf-16 tomato at the early stages of C. fulvum infection. Contrary to the previous study, the number of up-regulated genes in Cf-16 compared to Cf-10 and Cf-12 tomatoes was significantly higher at the early stages of C. fulvum infection. CONCLUSION Our results provide new insight into the Cf-mediated mechanism of resistance to C. fulvum, especially the unique characteristics of Cf-16 tomato in response to this fungus.
Collapse
Affiliation(s)
- Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yufang Bao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yaoguang Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huijia Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Chong Du
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Libo Xie
- Horticultural Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069 China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
15
|
Zhao T, Liu W, Zhao Z, Yang H, Bao Y, Zhang D, Wang Z, Jiang J, Xu Y, Zhang H, Li J, Chen Q, Xu X. Transcriptome profiling reveals the response process of tomato carrying Cf-19 and Cladosporium fulvum interaction. BMC PLANT BIOLOGY 2019; 19:572. [PMID: 31856725 PMCID: PMC6923989 DOI: 10.1186/s12870-019-2150-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND During tomato cultivation, tomato leaf mould is a common disease caused by Cladosporium fulvum (C. fulvum). By encoding Cf proteins, which can recognize corresponding AVR proteins produced by C. fulvum, Cf genes provide resistance to C. fulvum, and the resistance response patterns mediated by different Cf genes are not identical. Plants carrying the Cf-19 gene show effective resistance to C. fulvum in the field and can be used as new resistant materials in breeding. In this study, to identify key regulatory genes related to resistance and to understand the resistance response process in tomato plants carrying Cf-19, RNA sequencing (RNA-seq) was used to analyse the differences between the response of resistant plants (CGN18423, carrying the Cf-19 gene) and susceptible plants (Moneymaker (MM), carrying the Cf-0 gene) at 0, 7 and 20 days after inoculation (dai). RESULTS A total of 418 differentially expressed genes (DEGs) were identified specifically in the CGN18423 response process. Gene Ontology (GO) analysis revealed that GO terms including "plasma membrane (GO_Component)", "histidine decarboxylase activity (GO_Function)", and "carboxylic acid metabolic process (GO_Process)", as well as other 10 GO terms, were significantly enriched. The "plant hormone signal transduction" pathway, which was unique to CGN18423 in the 0-7 dai comparison, was identified. Moreover, ten key regulatory points were screened from the "plant hormone signal transduction" pathway and the "plant pathogen interaction" pathway. Hormone content measurements revealed that the salicylic acid (SA) contents increased and peaked at 7 dai, after which the contents deceased and reached minimum values in both CGN18423 and MM plants at 20 dai. The jasmonic acid (JA) content increased to a very high level at 7 dai but then decreased to nearly the initial level at 20 dai in CGN18423, while it continued to increase slightly during the whole process from 0 to 20 dai in MM. CONCLUSIONS The initial responses are very different between the resistant and susceptible plants. The "plant hormone signal transduction" pathway is important for the formation of Cf-19-mediated immunity. In addition, both JA and SA play roles in regulating the Cf-19-dependent resistance response.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Wenhong Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Zhentong Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yufang Bao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Dongye Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Ziyu Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Ying Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Qingshan Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
16
|
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microb Pathog 2019; 137:103758. [DOI: 10.1016/j.micpath.2019.103758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
17
|
Liu G, Zhao T, You X, Jiang J, Li J, Xu X. Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato (Solanum lycopersicum). BMC PLANT BIOLOGY 2019; 19:15. [PMID: 30621598 PMCID: PMC6325758 DOI: 10.1186/s12870-018-1616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/21/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Leaf mold, one of the major diseases of tomato caused by Cladosporium fulvum (C. fulvum), can dramatically reduce the yield and cause multimillion dollar losses annually worldwide. Mapping the resistance genes (R genes) of C. fulvum and devising MAS based strategies for breeding new cultivars is an effective approach to improve the resistance in tomato. Up to now, many C. fulvum genes or QTLs have been mapped using different genetic materials, but few studies focused on Cf-10 gene positioning. RESULTS In this study, we investigated the genetic rules for Cf-10 and used a novel combinatorial strategy to rapidly map the Cf-10 gene. Initially, the performance of F1, F2 and BC1F1 individuals after infection, demonstrated that the resistance against C. fulvum was controlled by a single dominant gene. Two pools of resistant and susceptible individuals from F2 population were investigated, using mapping by sequencing approach and Cf-10 was found to be localized to 3.35 Mb and 3.74 Mb on chromosome 1, employing SNP/InDel index methods, respectively. After accounting for overlapping regions, these two algorithms yielded a total length of 3.29 Mb, narrowing down the target region. We further developed five serviceable KASP markers for this region based on sequencing data and conducted local QTL mapping using individuals from the F2 population, except for mapping by sequencing as mentioned above. Finally Cf-10 gene was mapped spanning a region of 790 kb, where only one gene (Solyc01g007130.3) was annotated as probable receptor protein kinase TMK1 with a LRR motif, a common R gene characteristic. The RT-qPCR analysis further confirmed the localization and the relative expression of Solyc01g007130.3 in Ontario 792 and was found to be significantly higher than that in Moneymaker at 9 dpi and 12 dpi, respectively. CONCLUSION This study proposed a novel combinatorial strategy by combining SNP-index, InDel-index analyses and local QTL mapping using KASP genotyping approach to rapidly map genes responsible for specific traits and provided a robust base for cloning the Cf-10 gene. Furthermore, these analyses suggest that Solyc01g007130.3 is a potential candidate to be regarded as Cf-10 gene.
Collapse
Affiliation(s)
- Guan Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Xiaoqing You
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| |
Collapse
|
18
|
Noman A, Liu Z, Yang S, Shen L, Hussain A, Ashraf MF, Khan MI, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog 2018; 118:336-346. [PMID: 29614367 DOI: 10.1016/j.micpath.2018.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
Extensive transcriptional reprogramming after pathogen attack determines immunity to these invaders and plant development. Zinc finger (ZNF) transcription factors regulate important processes in plants such as development, vegetative activities and plant immunity. Despite their immense significance, majority of ZNF transcription factors (TF) involved in pepper immunity and resistance to heat stress have not been focused much. Herein, we identified and functionally characterized CaZNF830 in pepper defense against Ralstonia solanacearum inoculation (RSI) and tolerance to high temperature and high humidity (HTHH). Transient expression analysis of CaZNF830-GFP fusion protein in tobacco leaves revealed its localization to the nucleus. Transcription of CaZNF830 is induced in pepper plants upon RSI or HTHH. Consistent with this, fluorometric GUS enzymatic assay driven by pCaZNF830 presented significantly enhanced activity under RSI and HTHH in comparison with the control plants. The silencing of CaZNF830 by virus induced gene silencing (VIGS) significantly compromised pepper immunity against RSI with enhanced growth of Ralstonia solanacearum in pepper plants. Silencing of CaZNF830 also impaired tolerance to HTHH coupled with decreased expression levels of immunity and thermo-tolerance associated marker genes including CaHIR1, CaNPR1, CaPR1, CaABR1 and CaHSP24. By contrast, the transient over-expression of CaZNF830 in pepper leaves by infiltration of GV3101 cells containing 35S::CaZNF830-HA induced HR mimic cell death, H2O2 accumulation and activated the transcriptions of the tested defense-relative or thermo-tolerance associated marker genes. RT-PCR and immune-blotting assay confirmed the stable expression of HA-tagged CaZNF830 mRNA and protein in pepper. All these results suggest that CaZNF830 acts as a positive regulator of plant immunity against RSI or tolerance to HTHH, it is induced by RSI or HTHH and consequently activate pepper immunity against RSI or tolerance to HTHH by directly or indirectly transcriptional modulation of many defense-linked genes.
Collapse
Affiliation(s)
- Ali Noman
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Furqan Ashraf
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Ifnan Khan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
19
|
Yang H, Zhao T, Jiang J, Wang S, Wang A, Li J, Xu X. Mapping and screening of the tomato Stemphylium lycopersici resistance gene, Sm, based on bulked segregant analysis in combination with genome resequencing. BMC PLANT BIOLOGY 2017; 17:266. [PMID: 29284401 PMCID: PMC5747103 DOI: 10.1186/s12870-017-1215-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/18/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Tomato gray leaf spot disease caused by Stemphylium lycopersici (S. lycopersici) is considered one of the major diseases of cultivated tomatoes. The only S. lycopersici resistance gene, Sm, was derived from the wild tomato species S. pimpinellifolium. Sm has been identified as an effective source of gray leaf spot resistance in tomatoes and has been mapped to tomato chromosome 11. In this study, the first bulked segregant analysis (BSA) combined with genome resequencing for the mapping and screening of the Sm candidate gene was performed. RESULTS Based on the resequencing results, we identified 50,968 Diff-markers, most of which were distributed on chromosome 11. A total of 37 genes were located in the interval of 0.26-Mb. The gene loci of resistant and susceptible lines were sequenced successfully using PCR products. The relative expression levels of candidate genes in resistant and susceptible lines were confirmed via qRT-PCR, Solyc11g011870.1.1 and Solyc11g011880.1.1 were identified through qRT-PCR. A marker, D5, which was cosegregated with the resistant locus, was identified according to the mutation of the Solyc11g011880.1.1 trait in the resistant line. CONCLUSIONS The Sm gene was mapped to the short arm of chromosome 11. The candidate genes Solyc11g011870.1.1 and Solyc11g011880.1.1 displayed expression patterns related to the resistance response. This study will be valuable for Sm cloning and Sm gene breeding in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Horticulture, Northeast Agricultural University, Mucai Street 59, Xiangfang District Harbin, 150030, China
| | - Tingting Zhao
- College of Horticulture, Northeast Agricultural University, Mucai Street 59, Xiangfang District Harbin, 150030, China
| | - Jingbin Jiang
- College of Horticulture, Northeast Agricultural University, Mucai Street 59, Xiangfang District Harbin, 150030, China
| | | | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Mucai Street 59, Xiangfang District Harbin, 150030, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Mucai Street 59, Xiangfang District Harbin, 150030, China.
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Mucai Street 59, Xiangfang District Harbin, 150030, China.
| |
Collapse
|
20
|
Jia Q, Wang J, Zhu J, Hua W, Shang Y, Yang J, Liang Z. Toward Identification of Black Lemma and Pericarp Gene Blp1 in Barley Combining Bulked Segregant Analysis and Specific-Locus Amplified Fragment Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1414. [PMID: 28855914 PMCID: PMC5557779 DOI: 10.3389/fpls.2017.01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 05/13/2023]
Abstract
Black barley is caused by phytomelanin synthesized in lemma and/or pericarp and the trait is controlled by one dominant gene Blp1. The gene is mapped on chromosome 1H by molecular markers, but it is yet to be isolated. Specific-locus amplified fragment sequencing (SLAF-seq) is an effective method for large-scale de novo single nucleotide polymorphism (SNP) discovery and genotyping. In the present study, SLAF-seq with bulked segregant analysis (BSA) was employed to obtain sufficient markers to fine mapping Blp1 gene in an F2 population derived from Hatiexi No.1 × Zhe5819. Based on SNP screening criteria, a total of 77,542 polymorphic SNPs met the requirements for association analysis. Combining two association analysis methods, the overlapped region with a size of 32.41 Mb on chromosome 1H was obtained as the candidate region of Blp1 gene. According to SLAF-seq data, markers were developed in the target region and were used for mapping the Blp1 gene. Linkage analysis showed that Blp1 co-segregated with HZSNP34 and HZSNP36, and was delimited by two markers (HZSNP35 and HZSNP39) spanning 8.1 cM in 172 homozygous yellow grain F2 plants of Hatiexi No.1 × Zhe5819. More polymorphic markers were screened in the reduced target region and were used to genotype the population. As a result, Blp1 was delimited within a 1.66 Mb on chromosome 1H by the upstream marker HZSNP63 and the downstream marker HZSNP59. Our results demonstrated the utility of SLAF-seq-BSA approach to identify the candidate region and discover polymorphic markers at the specific targeted genomic region.
Collapse
Affiliation(s)
- Qiaojun Jia
- College of Life Sciences, Zhejiang Sci-Tech UniversityHangzhou, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang ProvinceHangzhou, China
| | - Junmei Wang
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jinghuan Zhu
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Wei Hua
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yi Shang
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianming Yang
- Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Zongsuo Liang
- College of Life Sciences, Zhejiang Sci-Tech UniversityHangzhou, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang ProvinceHangzhou, China
| |
Collapse
|
21
|
Xue DQ, Chen XL, Zhang H, Chai XF, Jiang JB, Xu XY, Li JF. Transcriptome Analysis of the Cf-12-Mediated Resistance Response to Cladosporium fulvum in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 7:2012. [PMID: 28105042 PMCID: PMC5212946 DOI: 10.3389/fpls.2016.02012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Cf-12 is an effective gene for resisting tomato leaf mold disease caused by Cladosporium fulvum (C. fulvum). Unlike many other Cf genes such as Cf-2, Cf-4, Cf-5, and Cf-9, no physiological races of C. fulvum that are virulent to Cf-12 carrying plant lines have been identified. In order to better understand the molecular mechanism of Cf-12 gene resistance response, RNA-Seq was used to analyze the transcriptome changes at three different stages of C. fulvum infection (0, 4, and 8 days post infection [dpi]). A total of 9100 differentially expressed genes (DEGs) between 4 and 0 dpi, 8643 DEGs between 8 and 0 dpi and 2547 DEGs between 8 and 4 dpi were identified. In addition, we found that 736 DEGs shared among the above three groups, suggesting the presence of a common core of DEGs in response to C. fulvum infection. These DEGs were significantly enriched in defense-signaling pathways such as the calcium dependent protein kinases pathway and the jasmonic acid signaling pathway. Additionally, we found that many transcription factor genes were among the DEGs, indicating that transcription factors play an important role in C. fulvum defense response. Our study provides new insight on the molecular mechanism of Cf resistance to C. fulvum, especially the unique features of Cf-12 in responding to C. fulvum infection.
Collapse
Affiliation(s)
- Dong-Qi Xue
- College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Xiu-Ling Chen
- College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Hong Zhang
- College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Xin-Feng Chai
- College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Jing-Bin Jiang
- College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Xiang-Yang Xu
- College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Jing-Fu Li
- College of Horticulture, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
22
|
Sheng Y, Wang Y, Jiao S, Jin Y, Ji P, Luan F. Mapping and Preliminary Analysis of ABORTED MICROSPORES ( AMS) as the Candidate Gene Underlying the Male Sterility ( MS-5) Mutant in Melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2017; 8:902. [PMID: 28611814 PMCID: PMC5447745 DOI: 10.3389/fpls.2017.00902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 05/06/2023]
Abstract
Melon is an important agricultural and economic vegetable crop worldwide. The genetic male sterility mutant (ms-5) has a recessive nuclear gene that controls the male sterility germplasm. Male sterility could reduce the cost of F1 seed production in melon, but heterozygous fertile plants should be removed before pollination. In this study, bulked segregant analysis combined with specific length amplified fragment sequencing was applied to map the single nuclear male sterility recessive gene. A 30-kb candidate region on chromosome 9 located on scaffold 000048 and spanning 2,522,791 to 2,555,104 bp was identified and further confirmed by cleavage amplified polymorphic sequence markers based on parental line resequencing data and classical mapping of 252 F2 individuals. Gene prediction indicated that six annotated genes are present in the 30-kb candidate region. Quantitative RT-PCR revealed significant differences in the expression level of the LOC103498166 ABORTED MICROSPORES (AMS) gene in male-sterile lines (ms-5) and male-fertile (HM1-1) lines during the 2-mm (tetrad) and 5-mm (the first pollen mitosis) periods, and negative regulation of the AMS candidate gene transcription factor was also detected. Sequencing and cluster analysis of the AMS transcription factor revealed five single-nucleotide polymorphisms between the parental lines. The data presented herein suggest that the AMS transcription factor is a possible candidate gene for single nuclear male sterility in melon. The results of this study will help breeders to identify male-sterile and -fertile plants at seeding as marker-assisted selection methods, which would reduce the cost of seed production and improve the use of male-sterile lines in melon.
Collapse
Affiliation(s)
- Yunyan Sheng
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural UniversityHarbin, China
- *Correspondence: Yunyan Sheng,
| | - Yudan Wang
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Shiqi Jiao
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Yazhong Jin
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Peng Ji
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Feishi Luan
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
23
|
Li Q, Lu Y, Pan C, Yao M, Zhang J, Yang X, Liu W, Li X, Xi Y, Li L. Chromosomal Localization of Genes Conferring Desirable Agronomic Traits from Wheat-Agropyron cristatum Disomic Addition Line 5113. PLoS One 2016; 11:e0165957. [PMID: 27824906 PMCID: PMC5100930 DOI: 10.1371/journal.pone.0165957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022] Open
Abstract
Creation of wheat-alien disomic addition lines and localization of desirable genes on alien chromosomes are important for utilization of these genes in genetic improvement of common wheat. In this study, wheat-Agropyron cristatum derivative line 5113 was characterized by genomic in situ hybridization (GISH) and specific-locus amplified fragment sequencing (SLAF-seq), and was demonstrated to be a novel wheat-A. cristatum disomic 6P addition line. Compared with its parent Fukuhokomugi (Fukuho), 5113 displayed multiple elite agronomic traits, including higher uppermost internode/plant height ratio, larger flag leaf, longer spike length, elevated grain number per spike and spikelet number per spike, more kernel number in the middle spikelet, more fertile tiller number per plant, and enhanced resistance to powdery mildew and leaf rust. Genes conferring these elite traits were localized on the A. cristatum 6P chromosome by using SLAF-seq markers and biparental populations (F1, BC1F1 and BC1F2 populations) produced from the crosses between Fukuho and 5113. Taken together, chromosomal localization of these desirable genes will facilitate transferring of high-yield and high-resistance genes from A. cristatum into common wheat, and serve as the foundation for the utilization of 5113 in wheat breeding.
Collapse
Affiliation(s)
- Qingfeng Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cuili Pan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miaomiao Yao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|