1
|
Safiullina AK, Ernazarova DK, Turaev OS, Rafieva FU, Ernazarova ZA, Arslanova SK, Toshpulatov AK, Oripova BB, Kudratova MK, Khalikov KK, Iskandarov AA, Khidirov MT, Yu JZ, Kushanov FN. Genetic Diversity and Subspecific Races of Upland Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:1533. [PMID: 39766800 PMCID: PMC11675639 DOI: 10.3390/genes15121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The classification and phylogenetic relationships of Gossypium hirsutum L. landraces, despite their proximity to southern Mexico, remain unresolved. This study aimed to clarify these relationships using SSR markers and hybridization methods, focusing on subspecies and race differentiation within G. hirsutum L. Methods: Seventy polymorphic SSR markers (out of 177 tested) were used to analyze 141 alleles and calculate genetic distances among accessions. Phylogenetic relationships were determined using MEGA software (version 11.0.13) and visualized in a phylogenetic tree. ANOVA in NCSS 12 was used for statistical analysis. Over 1000 inter-race crosses were conducted to assess boll-setting rates. Results: Distinct phylogenetic patterns were identified between G. hirsutum subspecies and races, correlating with boll-setting rates. Latifolium, richmondii, and morilli showed no significant increase in boll-setting rates in reciprocal crosses. Cultivars Omad and Bakht, as paternal parents, yielded higher boll-setting rates. Religiosum and yucatanense displayed high boll- and seed-setting rates as maternal parents but low rates as paternal parents. Additionally, phylogenetic analysis revealed a close relationship between cultivars 'Omad' and 'Bakht' with G. hirsutum race richmondii, indicating their close evolutionary relationship. Conclusions: Reciprocal differentiation characteristics of G. hirsutum subspecies and races, particularly religiosum and yucatanense, should be considered during hybridization for genetic and breeding studies. Understanding the phylogenetic relationships among G. hirsutum taxa is crucial for exploring the genetic diversity of this economically important species.
Collapse
Affiliation(s)
- Asiya K. Safiullina
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Research Institute of Plant Genetic Resources, National Center for Knowledge and Innovation in Agriculture, Tashkent 100180, Uzbekistan
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Ziraatkhan A. Ernazarova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Sevara K. Arslanova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Abdulqahhor Kh. Toshpulatov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Kuvandik K. Khalikov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Abdulloh A. Iskandarov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - John Z. Yu
- United States Department of Agriculture (USDA)—Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, College Station, TX 77845, USA;
| | - Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| |
Collapse
|
2
|
Haile AT, Kovi MR, Johnsen SS, Hvoslef-Eide T, Tesfaye B, Rognli OA. Limited genetic diversity found among genotypes of the Entada landrace ( Ensete ventricosum, (Welw.) Chessman) from Ethiopia. FRONTIERS IN PLANT SCIENCE 2024; 15:1336461. [PMID: 39315368 PMCID: PMC11416936 DOI: 10.3389/fpls.2024.1336461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
The Entada landrace of enset (Ensete ventricosum (Welw.) Chessman) is probably the most unique indigenous crop in Ethiopia, being maintained and utilized by the Ari people in the South of Ethiopia. Here we describe genetic diversity, selection signatures and relationship of Entada with cultivated and wild enset using 117 Entada genotypes collected from three Entada growing regions in Ethiopia (Sidama, South and North Ari). A total number of 1,617 high-quality SNP markers, obtained from ddRAD-sequences, were used for the diversity studies. Phylogenetic analysis detected a clear distinction between cultivated enset, Entada and wild enset with Entada forming a completely separated clade. However, extremely short branch lengths among the Entada genotypes indicate very little molecular evolution in the Entada lineages. Observed and expected heterozygosities were high, 0.73 and 0.50, respectively. Overall, our results strongly indicate that the Entada genotypes we have studied originated from one or a few clonal lineages that have been propagated and spread among farmers as clones. Prolonged clonal propagation of heterozygous genotypes from a single or few founding lineages has led to populations with very little or no diversity between genotypes, and high heterozygosity within genotypes. Signatures of directional selection were identified at eight loci based on an FST outlier analysis. Four candidate genes detected are involved in axillary shoot growth and might be involved in controlling natural sucker formation in Entada.
Collapse
Affiliation(s)
- Alye Tefera Haile
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Mallikarjuna Rao Kovi
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sylvia Sagen Johnsen
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trine Hvoslef-Eide
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Bizuayehu Tesfaye
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Odd Arne Rognli
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
3
|
Liu Y, Xin W, Chen L, Liu Y, Wang X, Ma C, Zhai L, Feng Y, Gao J, Zhang W. Genome-Wide Association Analysis of Effective Tillers in Rice under Different Nitrogen Gradients. Int J Mol Sci 2024; 25:2969. [PMID: 38474217 DOI: 10.3390/ijms25052969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen is a crucial element that impacts rice yields, and effective tillering is a significant agronomic characteristic that can influence rice yields. The way that reduced nitrogen affects effective tillering is a complex quantitative trait that is controlled by multiple genes, and its genetic basis requires further exploration. In this study, 469 germplasm varieties were used for a genome-wide association analysis aiming to detect quantitative trait loci (QTL) associated with effective tillering at low (60 kg/hm2) and high (180 kg/hm2) nitrogen levels. QTLs detected over multiple years or under different treatments were scrutinized in this study, and candidate genes were identified through haplotype analysis and spatio-temporal expression patterns. A total of seven genes (NAL1, OsCKX9, Os01g0690800, Os02g0550300, Os02g0550700, Os04g0615700, and Os04g06163000) were pinpointed in these QTL regions, and were considered the most likely candidate genes. These results provide favorable information for the use of auxiliary marker selection in controlling effective tillering in rice for improved yields.
Collapse
Affiliation(s)
- Yuzhuo Liu
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Liqiang Chen
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuqi Liu
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Wang
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Cheng Ma
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Laiyuan Zhai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingying Feng
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiping Gao
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenzhong Zhang
- College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Naveed S, Toyinbo J, Ingole H, Valavanur Shekar P, Jones M, Campbell BT, Rustgi S. Development of High-Yielding Upland Cotton Genotypes with Reduced Regrowth after Defoliation Using a Combination of Molecular and Conventional Approaches. Genes (Basel) 2023; 14:2081. [PMID: 38003024 PMCID: PMC10671241 DOI: 10.3390/genes14112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cotton is an economically important crop. However, the yield gain in cotton has stagnated over the years, probably due to its narrow genetic base. The introgression of beneficial variations through conventional and molecular approaches has helped broaden its genetic base to some extent. The growth habit of cotton is one of the crucial factors that determine crop maturation time, yield, and management. This study used 44 diverse upland cotton genotypes to develop high-yielding cotton germplasm with reduced regrowth after defoliation and early maturity by altering its growth habit from perennial to somewhat annual. We selected eight top-scoring genotypes based on the gene expression analysis of five floral induction and meristem identity genes (FT, SOC1, LFY, FUL, and AP1) and used them to make a total of 587 genetic crosses in 30 different combinations of these genotypes. High-performance progeny lines were selected based on the phenotypic data on plant height, flower and boll numbers per plant, boll opening date, floral clustering, and regrowth after defoliation as surrogates of annual growth habit, collected over four years (2019 to 2022). Of the selected lines, 8×5-B3, 8×5-B4, 9×5-C1, 8×9-E2, 8×9-E3, and 39×5-H1 showed early maturity, and 20×37-K1, 20×37-K2, and 20×37-D1 showed clustered flowering, reduced regrowth, high quality of fiber, and high lint yield. In 2022, 15 advanced lines (F8/F7) from seven cross combinations were selected and sent for an increase to a Costa Rica winter nursery to be used in advanced testing and for release as germplasm lines. In addition to these breeding lines, we developed molecular resources to breed for reduced regrowth after defoliation and improved yield by converting eight expression-trait-associated SNP markers we identified earlier into a user-friendly allele-specific PCR-based assay and tested them on eight parental genotypes and an F2 population.
Collapse
Affiliation(s)
- Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (J.T.); (H.I.); (P.V.S.); (M.J.)
- USDA-ARS Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Johnson Toyinbo
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (J.T.); (H.I.); (P.V.S.); (M.J.)
| | - Hrishikesh Ingole
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (J.T.); (H.I.); (P.V.S.); (M.J.)
| | - Prasanna Valavanur Shekar
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (J.T.); (H.I.); (P.V.S.); (M.J.)
| | - Michael Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (J.T.); (H.I.); (P.V.S.); (M.J.)
| | - B. Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA;
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (J.T.); (H.I.); (P.V.S.); (M.J.)
| |
Collapse
|
5
|
Gowda SA, Bourland FM, Kaur B, Jones DC, Kuraparthy V. Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:230. [PMID: 37875695 DOI: 10.1007/s00122-023-04477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L. were genotyped with cottonSNP63K array and phenotyped for photoperiod sensitivity under long day-length conditions. The genetic diversity analysis using 26,952 polymorphic SNPs indicated a progressively narrowed diversity from the landraces (0.230) to the DIV panel accessions (0.195) and FB panel (0.116). Structure analysis in the US germplasm identified seven subpopulations representing all four major regions of the US cotton belt. Three subpopulations were identified within the landrace accessions. The highest fixation index (FST) of 0.65 was found between landrace accessions of Guatemala and the Plains-type cultivars from Southwest cotton region while the lowest FST values were between the germplasms of Mid-South and Southeastern regions. Genome wide association studies (GWAS) of photoperiod response using 600 phenotyped accessions identified 14 marker trait associations spread across eight Upland cotton chromosomes. Six of these marker trait associations, on four chromosomes (A10, D04, D05, and D06), showed significant epistatic interactions. Targeted genomic analysis identified regions with 19 candidate genes including Transcription factor Vascular Plant One-Zinc Finger 1 (VOZ1) and Protein Photoperiod-Independent Early Flowering 1 (PIE1) genes. Genetic diversity and genome wide analyses of photoperiod sensitivity in diverse cotton germplasms will enable the use of genomic tools to systematically utilize the tropical germplasm and its beneficial alleles for broadening the genetic base in Upland cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred M Bourland
- NE Research and Extension Center, Crop, Soil, and Environmental Sciences, University of Arkansas, Keiser, AR, 72351, USA
| | - Baljinder Kaur
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Don C Jones
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - Vasu Kuraparthy
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Phetluan W, Wanchana S, Aesomnuk W, Adams J, Pitaloka MK, Ruanjaichon V, Vanavichit A, Toojinda T, Gray JE, Arikit S. Candidate genes affecting stomatal density in rice (Oryza sativa L.) identified by genome-wide association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111624. [PMID: 36737006 DOI: 10.1016/j.plantsci.2023.111624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phosphate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40 S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.
Collapse
Affiliation(s)
- Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand.
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand.
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julie E Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
7
|
Gowda SA, Shrestha N, Harris TM, Phillips AZ, Fang H, Sood S, Zhang K, Bourland F, Bart R, Kuraparthy V. Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4421-4436. [PMID: 36208320 DOI: 10.1007/s00122-022-04229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Identification and genomic characterization of major resistance locus against cotton bacterial blight (CBB) using GWAS and linkage mapping to enable genomics-based development of durable CBB resistance and gene discovery in cotton. Cotton bacterial leaf blight (CBB), caused by Xanthomonas citri subsp. malvacearum (Xcm), has periodically been a damaging disease in the USA. Identification and deployment of genetic resistance in cotton cultivars is the most economical and efficient means of reducing crop losses due to CBB. In the current study, genome-wide association study (GWAS) of CBB resistance using an elite diversity panel of 380 accessions, genotyped with the cotton single nucleotide polymorphism (SNP) 63 K array, and phenotyped with race-18 of CBB, localized the CBB resistance to a 2.01-Mb region in the long arm of chromosome D02. Molecular genetic mapping using an F6 recombinant inbred line (RIL) population showed the CBB resistance in cultivar Arkot 8102 was controlled by a single locus (BB-13). The BB-13 locus was mapped within the 0.95-cM interval near the telomeric region in the long arm of chromosome D02. Flanking SNP markers, i04890Gh and i04907Gh of the BB-13 locus, identified from the combined linkage analysis and GWAS, targeted it to a 371-Kb genomic region. Candidate gene analysis identified thirty putative gene sequences in the targeted genomic region. Nine of these putative genes and two NBS-LRR genes adjacent to the targeted region were putatively involved in plant disease resistance and are possible candidate genes for BB-13 locus. Genetic mapping and genomic targeting of the BB13 locus in the current study will help in cloning the CBB-resistant gene and establishing the molecular genetic architecture of the BB-13 locus towards developing durable resistance to CBB in cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Navin Shrestha
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Taylor M Harris
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St Louis, MO, 63110, USA
| | - Anne Z Phillips
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hui Fang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shilpa Sood
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kuang Zhang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred Bourland
- NE Research & Extension Center, Crop, Soil, and Environmental Sciences, University of Arkansas, Keiser, AR, 72351, USA
| | - Rebecca Bart
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Vasu Kuraparthy
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Guo X, Wang Y, Hou Y, Zhou Z, Sun R, Qin T, Wang K, Liu F, Wang Y, Huang Z, Xu Y, Cai X. Genome-Wide Dissection of the Genetic Basis for Drought Tolerance in Gossypium hirsutum L. Races. FRONTIERS IN PLANT SCIENCE 2022; 13:876095. [PMID: 35837453 PMCID: PMC9274165 DOI: 10.3389/fpls.2022.876095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Drought seriously threats the growth and development of Gossypium hirsutum L. To dissect the genetic basis for drought tolerance in the G. hirsutum L. germplasm, a population, consisting of 188 accessions of G. hirsutum races and a cultivar (TM-1), was genotyped using the Cotton80KSNP biochip, and 51,268 high-quality single-nucleotide polymorphisms (SNPs) were obtained. Based on the phenotypic data of eight drought relative traits from four environments, we carried out association mapping with five models using GAPIT software. In total, thirty-six SNPs were detected significantly associated at least in two environments or two models. Among these SNPs, 8 and 28 (including 24 SNPs in 5 peak regions) were distributed in the A and D subgenome, respectively; eight SNPs were found to be distributed within separate genes. An SNP, TM73079, located on chromosome D10, was simultaneously associated with leaf fresh weight, leaf wilted weight, and leaf dry weight. Another nine SNPs, TM47696, TM33865, TM40383, TM10267, TM59672, TM59675, TM59677, TM72359, and TM72361, on chromosomes A13, A10, A12, A5, D6, and D9, were localized within or near previously reported quantitative trait loci for drought tolerance. Moreover, 520 genes located 200 kb up- and down-stream of 36 SNPs were obtained and analyzed based on gene annotation and transcriptome sequencing. The results showed that three candidate genes, Gh_D08G2462, Gh_A03G0043, and Gh_A12G0369, may play important roles in drought tolerance. The current GWAS represents the first investigation into mapping QTL for drought tolerance in G. hirsutum races and provides important information for improving cotton cultivars.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Wang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Runrun Sun
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Tengfei Qin
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
9
|
Conaty WC, Broughton KJ, Egan LM, Li X, Li Z, Liu S, Llewellyn DJ, MacMillan CP, Moncuquet P, Rolland V, Ross B, Sargent D, Zhu QH, Pettolino FA, Stiller WN. Cotton Breeding in Australia: Meeting the Challenges of the 21st Century. FRONTIERS IN PLANT SCIENCE 2022; 13:904131. [PMID: 35646011 PMCID: PMC9136452 DOI: 10.3389/fpls.2022.904131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD). While the Australian industry is the focus, CSIRO cultivars have global impact in North America, South America, and Europe. The program is unique compared with many other public and commercial breeding programs because it focuses on diverse and integrated research with commercial outcomes. It represents the full research pipeline, supporting extensive long-term fundamental molecular research; native and genetically modified (GM) trait development; germplasm enhancement focused on yield and fiber quality improvements; integration of third-party GM traits; all culminating in the release of new commercial cultivars. This review presents evidence of past breeding successes and outlines current breeding efforts, in the areas of yield and fiber quality improvement, as well as the development of germplasm that is resistant to pests, diseases and abiotic stressors. The success of the program is based on the development of superior germplasm largely through field phenotyping, together with strong commercial partnerships with CSD and Bayer CropScience. These relationships assist in having a shared focus and ensuring commercial impact is maintained, while also providing access to markets, traits, and technology. The historical successes, current foci and future requirements of the CSIRO cotton breeding program have been used to develop a framework designed to augment our breeding system for the future. This will focus on utilizing emerging technologies from the genome to phenome, as well as a panomics approach with data management and integration to develop, test and incorporate new technologies into a breeding program. In addition to streamlining the breeding pipeline for increased genetic gain, this technology will increase the speed of trait and marker identification for use in genome editing, genomic selection and molecular assisted breeding, ultimately producing novel germplasm that will meet the coming challenges of the 21st Century.
Collapse
Affiliation(s)
| | | | - Lucy M. Egan
- CSIRO Agriculture and Food, Narrabri, NSW, Australia
| | - Xiaoqing Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Zitong Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Shiming Liu
- CSIRO Agriculture and Food, Narrabri, NSW, Australia
| | | | | | | | | | - Brett Ross
- Cotton Seed Distributors Ltd., Wee Waa, NSW, Australia
| | - Demi Sargent
- CSIRO Agriculture and Food, Narrabri, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | |
Collapse
|
10
|
Wu M, Pei W, Wedegaertner T, Zhang J, Yu J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:864850. [PMID: 35360295 PMCID: PMC8961181 DOI: 10.3389/fpls.2022.864850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 05/17/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the world's leading fiber crop and one of the most important oilseed crops. Genetic improvement of cotton has primarily focused on fiber yield and quality. However, there is an increased interest and demand for enhanced cottonseed traits, including protein, oil, fatty acids, and amino acids for broad food, feed and biofuel applications. As a byproduct of cotton production, cottonseed is an important source of edible oil in many countries and could also be a vital source of protein for human consumption. The focus of cotton breeding on high yield and better fiber quality has substantially reduced the natural genetic variation available for effective cottonseed quality improvement within Upland cotton. However, genetic variation in cottonseed oil and protein content exists within the genus of Gossypium and cultivated cotton. A plethora of genes and quantitative trait loci (QTLs) (associated with cottonseed oil, fatty acids, protein and amino acids) have been identified, providing important information for genetic improvement of cottonseed quality. Genetic engineering in cotton through RNA interference and insertions of additional genes of other genetic sources, in addition to the more recent development of genome editing technology has achieved considerable progress in altering the relative levels of protein, oil, fatty acid profile, and amino acids composition in cottonseed for enhanced nutritional value and expanded industrial applications. The objective of this review is to summarize and discuss the cottonseed oil biosynthetic pathway and major genes involved, genetic basis of cottonseed oil and protein content, genetic engineering, genome editing through CRISPR/Cas9, and QTLs associated with quantity and quality enhancement of cottonseed oil and protein.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Yuan X, Li Z, Xiong L, Song S, Zheng X, Tang Z, Yuan Z, Li L. Effective identification of varieties by nucleotide polymorphisms and its application for essentially derived variety identification in rice. BMC Bioinformatics 2022; 23:30. [PMID: 35012448 PMCID: PMC8751067 DOI: 10.1186/s12859-022-04562-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plant variety identification is the one most important of agricultural systems. Development of DNA marker profiles of released varieties to compare with candidate variety or future variety is required. However, strictly speaking, scientists did not use most existing variety identification techniques for "identification" but for "distinction of a limited number of cultivars," of which generalization ability always not be well estimated. Because many varieties have similar genetic backgrounds, even some essentially derived varieties (EDVs) are involved, which brings difficulties for identification and breeding progress. A fast, accurate variety identification method, which also has good performance on EDV determination, needs to be developed. RESULTS In this study, with the strategy of "Divide and Conquer," a variety identification method Conditional Random Selection (CRS) method based on SNP of the whole genome of 3024 rice varieties was developed and be applied in essentially derived variety (EDV) identification of rice. CRS is a fast, efficient, and automated variety identification method. Meanwhile, in practical, with the optimal threshold of identity score searched in this study, the set of SNP (including 390 SNPs) showed optimal performance on EDV and non-EDV identification in two independent testing datasets. CONCLUSION This approach first selected a minimal set of SNPs to discriminate non-EDVs in the 3000 Rice Genome Project, then united several simplified SNP sets to improve its generalization ability for EDV and non-EDV identification in testing datasets. The results suggested that the CRS method outperformed traditional feature selection methods. Furthermore, it provides a new way to screen out core SNP loci from the whole genome for DNA fingerprinting of crop varieties and be useful for crop breeding.
Collapse
Affiliation(s)
- Xiong Yuan
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China
| | - Zirong Li
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China
| | - Liwen Xiong
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China
| | - Sufeng Song
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Xingfei Zheng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Zheming Yuan
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanzhi Li
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Bai S, Hong J, Li L, Su S, Li Z, Wang W, Zhang F, Liang W, Zhang D. Dissection of the Genetic Basis of Rice Panicle Architecture Using a Genome-wide Association Study. RICE (NEW YORK, N.Y.) 2021; 14:77. [PMID: 34487253 PMCID: PMC8421479 DOI: 10.1186/s12284-021-00520-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/26/2021] [Indexed: 05/26/2023]
Abstract
Panicle architecture is one of the major factors influencing productivity of rice crops. The regulatory mechanisms underlying this complex trait are still unclear and genetic resources for rice breeders to improve panicle architecture are limited. Here, we have performed a genome-wide association study (GWAS) to analyze and identify genetic determinants underlying three panicle architecture traits. A population of 340 rice accessions from the 3000 Rice Genomes Project was phenotyped for panicle length, primary panicle number and secondary branch number over two years; GWAS was performed across the whole panel, and also across the japonica and indica sub-panels. A total of 153 quantitative trait loci (QTLs) were detected, of which 5 were associated with multiple traits, 8 were unique to either indica or japonica sub-panels, while 37 QTLs were stable across both years. Using haplotype and expression analysis, we reveal that genetic variations in the OsSPL18 promoter significantly affect gene expression and correlate with panicle length phenotypes. Three new candidate genes with putative roles in determining panicle length were also identified. Haplotype analysis of OsGRRP and LOC_Os03g03480 revealed high association with panicle length variation. Gene expression of DSM2, involved in abscisic acid biosynthesis, was up-regulated in long panicle accessions. Our results provide valuable information and resources for further unravelling the genetic basis determining rice panicle architecture. Identified candidate genes and molecular markers can be used in marker-assisted selection to improve rice panicle architecture through molecular breeding.
Collapse
Affiliation(s)
- Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fengli Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, 5064, Australia.
| |
Collapse
|
13
|
Billings GT, Jones MA, Rustgi S, Hulse-Kemp AM, Campbell BT. Population structure and genetic diversity of the Pee Dee cotton breeding program. G3 (BETHESDA, MD.) 2021; 11:jkab145. [PMID: 33914887 PMCID: PMC8495920 DOI: 10.1093/g3journal/jkab145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/12/2022]
Abstract
Accelerated marker-assisted selection and genomic selection breeding systems require genotyping data to select the best parents for combining beneficial traits. Since 1935, the Pee Dee (PD) cotton germplasm enhancement program has developed an important genetic resource for upland cotton (Gossypium hirsutum L.), contributing alleles for improved fiber quality, agronomic performance, and genetic diversity. To date, a detailed genetic survey of the program's eight historical breeding cycles has yet to be undertaken. The objectives of this study were to evaluate genetic diversity across and within-breeding groups, examine population structure, and contextualize these findings relative to the global upland cotton gene pool. The CottonSNP63K array was used to identify 17,441 polymorphic markers in a panel of 114 diverse PD genotypes. A subset of 4597 markers was selected to decrease marker density bias. Identity-by-state pairwise distance varied substantially, ranging from 0.55 to 0.97. Pedigree-based estimates of relatedness were not very predictive of observed genetic similarities. Few rare alleles were present, with 99.1% of SNP alleles appearing within the first four breeding cycles. Population structure analysis with principal component analysis, discriminant analysis of principal components, fastSTRUCTURE, and a phylogenetic approach revealed an admixed population with moderate substructure. A small core collection (n < 20) captured 99% of the program's allelic diversity. Allele frequency analysis indicated potential selection signatures associated with stress resistance and fiber cell growth. The results of this study will steer future utilization of the program's germplasm resources and aid in combining program-specific beneficial alleles and maintaining genetic diversity.
Collapse
Affiliation(s)
- Grant T Billings
- Clemson University, Pee Dee Research and Education Center, Florence, SC 29501, USA
- North Carolina State University, Crop Science Department, Raleigh, NC 27695, USA
| | - Michael A Jones
- Clemson University, Pee Dee Research and Education Center, Florence, SC 29501, USA
| | - Sachin Rustgi
- Clemson University, Pee Dee Research and Education Center, Florence, SC 29501, USA
| | - Amanda M Hulse-Kemp
- North Carolina State University, Crop Science Department, Raleigh, NC 27695, USA
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
| | - B Todd Campbell
- USDA-ARS, Coastal Plains, Soil, Water, and Plant Research Center, Florence, SC 29501, USA
| |
Collapse
|
14
|
Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton ( Gossypium hirsutum L.). PLANTS 2021; 10:plants10071300. [PMID: 34206949 PMCID: PMC8309191 DOI: 10.3390/plants10071300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
The genetic uniformity of cultivated cotton as a consequence of domestication and modern breeding makes it extremely vulnerable to abiotic challenges brought about by major climate shifts. To sustain productivity amidst worsening agro-environments, future breeding objectives need to seriously consider introducing new genetic variation from diverse resources into the current germplasm base of cotton. Landraces are genetically heterogeneous, population complexes that have been primarily selected for their adaptability to specific localized or regional environments. This makes them an invaluable genetic resource of novel allelic diversity that can be exploited to enhance the resilience of crops to marginal environments. The utilization of cotton landraces in breeding programs are constrained by the phenology of the plant and the lack of phenotypic information that can facilitate efficient selection of potential donor parents for breeding. In this review, the genetic value of cotton landraces and the major challenges in their utilization in breeding are discussed. Two strategies namely Focused Identification of Germplasm Strategy and Environmental Association Analysis that have been developed to effectively screen large germplasm collections for accessions with adaptive traits using geo-reference-based, mathematical modelling are highlighted. The potential applications of both approaches in mining available cotton landrace collections are also presented.
Collapse
|
15
|
Elassbli H, Abdelraheem A, Zhu Y, Teng Z, Wheeler TA, Kuraparthy V, Hinze L, Stelly DM, Wedegaertner T, Zhang J. Evaluation and genome-wide association study of resistance to bacterial blight race 18 in U.S. Upland cotton germplasm. Mol Genet Genomics 2021; 296:719-729. [PMID: 33779828 DOI: 10.1007/s00438-021-01779-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
Bacterial blight (BB), caused by Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease to cotton production in many countries. In the U.S., Xcm race 18 is the most virulent and widespread race and can cause serious yield losses. Planting BB-resistant cotton cultivars is the most effective method of controlling this disease. In this study, 335 U.S. Upland cotton accessions were evaluated for resistance to race 18 using artificial inoculations by scratching cotyledons on an individual plant basis in a greenhouse. The analysis of variance detected significant genotypic variation in disease incidence, and 50 accessions were resistant including 38 lines with no symptoms on either cotyledons or true leaves. Many of the resistant lines were developed in the MAR (multi-adversity resistance) breeding program at Texas A&M University, whereas others were developed before race 18 was first reported in the U.S. in 1973, suggesting a broad base of resistance to race 18. A genome-wide association study (GWAS) based on 26,301 single nucleotide polymorphic (SNP) markers detected 11 quantitative trait loci (QTL) anchored by 79 SNPs, including three QTL on each of the three chromosomes A01, A05 and D02, and one QTL on each of D08 and D10. This study has identified a set of obsolete Upland germplasm with resistance to race 18 and specific chromosomal regions delineated by SNPs for resistance. The results will assist in breeding cotton for BB resistance and facilitate further genomic studies in fine mapping resistance genes to enhance the understanding of the genetic basis of BB resistance in cotton.
Collapse
Affiliation(s)
- Hanan Elassbli
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Zonghua Teng
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Terry A Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew St, Lubbock, TX, 79403, USA
| | - Vasu Kuraparthy
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7620, USA
| | - Lori Hinze
- Crop Germplasm Research Unit, USDA, Agricultural Research Service, College Station, TX, 77845, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
16
|
Cushman KR, Pabuayon ICM, Hinze LL, Sweeney ME, de los Reyes BG. Networks of Physiological Adjustments and Defenses, and Their Synergy With Sodium (Na +) Homeostasis Explain the Hidden Variation for Salinity Tolerance Across the Cultivated Gossypium hirsutum Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:588854. [PMID: 33363555 PMCID: PMC7752944 DOI: 10.3389/fpls.2020.588854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The abilities to mobilize and/or sequester excess ions within and outside the plant cell are important components of salt-tolerance mechanisms. Mobilization and sequestration of Na+ involves three transport systems facilitated by the plasma membrane H+/Na+ antiporter (SOS1), vacuolar H+/Na+ antiporter (NHX1), and Na+/K+ transporter in vascular tissues (HKT1). Many of these mechanisms are conserved across the plant kingdom. While Gossypium hirsutum (upland cotton) is significantly more salt-tolerant relative to other crops, the critical factors contributing to the phenotypic variation hidden across the germplasm have not been fully unraveled. In this study, the spatio-temporal patterns of Na+ accumulation along with other physiological and biochemical interactions were investigated at different severities of salinity across a meaningful genetic diversity panel across cultivated upland Gossypium. The aim was to define the importance of holistic or integrated effects relative to the direct effects of Na+ homeostasis mechanisms mediated by GhHKT1, GhSOS1, and GhNHX1. Multi-dimensional physio-morphometric attributes were investigated in a systems-level context using univariate and multivariate statistics, randomForest, and path analysis. Results showed that mobilized or sequestered Na+ contributes significantly to the baseline tolerance mechanisms. However, the observed variance in overall tolerance potential across a meaningful diversity panel were more significantly attributed to antioxidant capacity, maintenance of stomatal conductance, chlorophyll content, and divalent cation (Mg2+) contents other than Ca2+ through a complex interaction with Na+ homeostasis. The multi-tier macro-physiological, biochemical and molecular data generated in this study, and the networks of interactions uncovered strongly suggest that a complex physiological and biochemical synergy beyond the first-line-of defense (Na+ sequestration and mobilization) accounts for the total phenotypic variance across the primary germplasm of Gossypium hirsutum. These findings are consistent with the recently proposed Omnigenic Theory for quantitative traits and should contribute to a modern look at phenotypic selection for salt tolerance in cotton breeding.
Collapse
Affiliation(s)
- Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Lori L. Hinze
- USDA-ARS, Crop Germplasm Research, College Station, TX, United States
| | | | | |
Collapse
|
17
|
Reconstruction of the Largest Pedigree Network for Pear Cultivars and Evaluation of the Genetic Diversity of the USDA-ARS National Pyrus Collection. G3-GENES GENOMES GENETICS 2020; 10:3285-3297. [PMID: 32675069 PMCID: PMC7466967 DOI: 10.1534/g3.120.401327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, maintains one of the world's largest and most diverse living Pyrus collection. A thorough genetic characterization of this germplasm will provide relevant information to optimize the conservation strategy of pear biodiversity, support the use of this germplasm in breeding, and increase our knowledge of Pyrus taxonomy, evolution, and domestication. In the last two decades simple sequence repeat (SSR) markers have been used at the NCGR for cultivar identification and small population structure analysis. However, the recent development of the Applied Biosystems Axiom Pear 70K Genotyping Array has allowed high-density single nucleotide polymorphism (SNP)-based genotyping of almost the entire collection. In this study, we have analyzed this rich dataset to discover new synonyms and mutants, identify putative labeling errors in the collection, reconstruct the largest pear cultivar pedigree and further elucidate the genetic diversity of Pyrus.
Collapse
|
18
|
Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM, Hulse-Kemp AM, Ding M, Ye W, Kirkbride RC, Jenkins J, Plott C, Lovell J, Lin YM, Vaughn R, Liu B, Simpson S, Scheffler BE, Wen L, Saski CA, Grover CE, Hu G, Conover JL, Carlson JW, Shu S, Boston LB, Williams M, Peterson DG, McGee K, Jones DC, Wendel JF, Stelly DM, Grimwood J, Schmutz J. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 2020; 52:525-533. [PMID: 32313247 PMCID: PMC7203012 DOI: 10.1038/s41588-020-0614-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement. Sequencing and genomic diversification of five allopolyploid cotton species provide insights into polyploid genome evolution and epigenetic landscapes for cotton improvement.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| | | | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Luis M De Santiago
- Department of Soil and Crop Sciences, Texas A&M University System, College Station, TX, USA
| | - Amanda M Hulse-Kemp
- US Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Raleigh, NC, USA
| | - Mingquan Ding
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.,College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Wenxue Ye
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - John Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Yu-Ming Lin
- Department of Soil and Crop Sciences, Texas A&M University System, College Station, TX, USA
| | - Robert Vaughn
- Department of Soil and Crop Sciences, Texas A&M University System, College Station, TX, USA
| | - Bo Liu
- Department of Soil and Crop Sciences, Texas A&M University System, College Station, TX, USA
| | - Sheron Simpson
- US Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Brian E Scheffler
- US Department of Agriculture-Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Li Wen
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joseph W Carlson
- The US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Shengqiang Shu
- The US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Lori B Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology and Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keith McGee
- School of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University System, College Station, TX, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,The US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
19
|
Azeem F, Tahir H, Ijaz U, Shaheen T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:433-444. [PMID: 32205921 PMCID: PMC7078431 DOI: 10.1007/s12298-020-00771-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 05/07/2023]
Abstract
Basic leucine zipper motif (bZIP) transcription factors (TFs) are involved in plant growth regulation, development, and environmental stress responses. These genes have been well characterized in model plants. In current study, a genome-wide analysis of bZIP genes was performed in Gossypium raimondii and Gossypium arboreum taking Arabidopsis thaliana as a reference genome. In total, 85 members of G. raimondii and 87 members of G. arboreum were identified and designated as GrbZIPs and GabZIPs respectively. Phylogenetic analysis clustered bZIP genes into 11 subgroups (A, B, C, D, F, G, H, I, S and X). Gene structure analysis to find the intro-exon structures revealed 1-14 exons in both species. The maximum number of introns were present in subgroup G and D while genes in subgroup S were intron-less except GrbZIP78, which is a unique characteristic as compared to other groups. Results of motif analysis predicted that all three species share a common bZIP motif. A detailed comparison of bZIPs gene distribution on chromosomes has shown a diverse arrangement of genes in both cotton species. Moreover, the functional similarity with orthologs was also predicted. The findings of this study revealed close similarity in gene structure of both cotton species and diversity in gene distribution on chromosomes. This study supports the divergence of both species from the common ancestor and later diversity in gene distribution on chromosomes due to evolutionary changes. Additionally, this work will facilitate the functional characterization of bZIP genes in cotton. Outcomes of this study represent foundation research on the bZIP TFs family in cotton and as a reference for other crops.
Collapse
Affiliation(s)
- Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hira Tahir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
20
|
Genetic Analysis of the Transition from Wild to Domesticated Cotton ( Gossypium hirsutum L.). G3-GENES GENOMES GENETICS 2020; 10:731-754. [PMID: 31843806 PMCID: PMC7003101 DOI: 10.1534/g3.119.400909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.
Collapse
|
21
|
Abdelraheem A, Elassbli H, Zhu Y, Kuraparthy V, Hinze L, Stelly D, Wedegaertner T, Zhang J. A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:563-577. [PMID: 31768602 DOI: 10.1007/s00122-019-03487-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/13/2019] [Indexed: 05/16/2023]
Abstract
A high-resolution GWAS detected consistent QTL for resistance to Verticillium wilt and Fusarium wilt race 4 in 376 U.S. Upland cotton accessions based on six independent replicated greenhouse tests. Verticillium wilt (VW, caused by Verticillium dahliae Kleb.) and Fusarium wilt (FOV, caused by Fusarium oxysporum f.sp. vasinfectum Atk. Sny & Hans) are the most important soil-borne fungal diseases in cotton. To augment and refine resistance quantitative trait loci (QTL), we conducted a genome-wide association study (GWAS) using high-density genotyping with the CottonSNP63K array. Resistance of 376 US Upland cotton accessions to a defoliating VW and virulent FOV4 was evaluated in four and two independent replicated greenhouse tests, respectively. A total of 15 and 13 QTL for VW and FOV4 resistances were anchored by 30 (on five chromosomes) and 56 (on six chromosomes) significant single nucleotide polymorphic (SNPs) markers, respectively. QTL on c8, c10, c16, and c21 were consistent in two or more tests for VW resistance, while two QTL on c8 and c14 were consistent for FOV4 resistance in two tests. Two QTL clusters on c16 and c19 were observed for both VW and FOV4 resistance, suggesting that these genomic regions may harbor genes in response to both diseases. Using BLAST search against the sequenced TM-1 genome, 30 and 35 candidate genes were identified on four QTL for VW resistance and on three QTL for FOV4 resistance, respectively. These genomic regions were rich in NBS-LRR genes presented in clusters. The results create opportunities for further studies to determine the correlations of field resistance with these QTL, molecular examinations of VW and FOV4 resistances, marker-assisted selection (MAS) and eventual cloning of QTL for disease resistance in cotton.
Collapse
Affiliation(s)
- Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Hanan Elassbli
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Vasu Kuraparthy
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7620, USA
| | - Lori Hinze
- Crop Germplasm Research, USDA-ARS, College Station, TX, 77845, USA
| | - David Stelly
- Department of Soil and Crop Sciences, Texas A & M University, College Station, TX, 77843, USA
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
22
|
He S, Sun G, Huang L, Yang D, Dai P, Zhou D, Wu Y, Ma X, Du X, Wei S, Peng J, Kuang M. Genomic divergence in cotton germplasm related to maturity and heterosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:929-942. [PMID: 30253066 DOI: 10.1111/jipb.12723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 05/06/2023]
Abstract
Commercial varieties of upland cotton (Gossypium hirsutum) have undergone extensive breeding for agronomic traits, such as fiber quality, disease resistance, and yield. Cotton breeding programs have widely used Chinese upland cotton source germplasm (CUCSG) with excellent agronomic traits. A better understanding of the genetic diversity and genomic characteristics of these accessions could accelerate the identification of desirable alleles. Here, we analyzed 10,522 high-quality single-nucleotide polymorphisms (SNP) with the CottonSNP63K microarray in 137 cotton accessions (including 12 hybrids of upland cotton). These data were used to investigate the genetic diversity, population structure, and genomic characteristics of each population and the contribution of these loci to heterosis. Three subgroups were identified, in agreement with their known pedigrees, geographical distributions, and times since introduction. For each group, we identified lineage-specific genomic divergence regions, which potentially harbor key alleles that determine the characteristics of each group, such as early maturity-related loci. Investigation of the distribution of heterozygous loci, among 12 commercial cotton hybrids, revealed a potential role for these regions in heterosis. Our study provides insight into the population structure of upland cotton germplasm. Furthermore, the overlap between lineage-specific regions and heterozygous loci, in the high-yield hybrids, suggests a role for these regions in cotton heterosis.
Collapse
Affiliation(s)
- Shoupu He
- Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, 455000, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gaofei Sun
- Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, 455000, China
- Department of Computer Science and Information Engineering/Data Mining Institute, Anyang Institute of Technology, Anyang, 455000, China
| | - Longyu Huang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daigang Yang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Panhong Dai
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Dayun Zhou
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Wu
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongfeng Ma
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, 455000, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoujun Wei
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jun Peng
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kuang
- Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, 455000, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
23
|
Zhang C, Li L, Liu Q, Gu L, Huang J, Wei H, Wang H, Yu S. Identification of Loci and Candidate Genes Responsible for Fiber Length in Upland Cotton ( Gossypium hirsutum L.) via Association Mapping and Linkage Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:53. [PMID: 30804954 PMCID: PMC6370998 DOI: 10.3389/fpls.2019.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/16/2019] [Indexed: 05/12/2023]
Abstract
Fiber length (FL) is an important fiber quality trait in cotton. Although many fiber quality quantitative trait loci (QTL) responsible for FL have been identified, most cannot be applied to breeding programs, mainly due to unstable environments or large confidence intervals. In this study, we combined a genome-wide association study (GWAS) and linkage mapping to identify and validate high-quality QTLs responsible for FL. For the GWAS, we developed 93,250 high-quality single-nucleotide polymorphism (SNP) markers based on 355 accessions, and the FL was measured in eight different environments. For the linkage mapping, we constructed an F 2 population from two extreme accessions. The high-density linkage maps spanned 3,848.29 cM, with an average marker interval of 1.41 cM. In total, 14 and 13 QTLs were identified in the association and linkage mapping analyses, respectively. Most importantly, a major QTL on chromosome D03 identified in both populations explained more than 10% of the phenotypic variation (PV). Furthermore, we found that a sucrose synthesis-related gene (Gh_D03G1338) was associated with FL in this QTL region. The RNA-seq data showed that Gh_D03G1338 was highly expressed during the fiber development stage, and the qRT-PCR analysis showed significant expression differences between the long fiber and short fiber varieties. These results suggest that Gh_D03G1338 may determine cotton fiber elongation by regulating the synthesis of sucrose. Favorable QTLs and candidate genes should be useful for increasing fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Chi Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Libei Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qibao Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|
24
|
Thareja G, Mathew S, Mathew LS, Mohamoud YA, Suhre K, Malek JA. Genotyping-by-sequencing identifies date palm clone preference in agronomics of the State of Qatar. PLoS One 2018; 13:e0207299. [PMID: 30517143 PMCID: PMC6281209 DOI: 10.1371/journal.pone.0207299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022] Open
Abstract
Understanding the genetic diversity in a crop population is key to its targeted breeding for desired traits, such as higher yields, better fruit quality and resistance to disease and changing climates. Date fruits represent a major crop in the Middle East and are key to achieving future food independence in arid countries like Qatar. We previously determined the genome of the date palm Phoenix dactylifera and showed that date palm trees world-wide divide into two distinct subpopulations of Eastern and Western origins. Here we applied a resource of SNPs from 179 commercially available date fruits to assess the genetic diversity of date palm trees grown in the State of Qatar. We found that palm trees in Qatar are mainly of Eastern origin, and that their genetic diversity doesn’t associate with regions of the State. Together with targeted genetic assays, our resource can be used in the future for date palm cultivar identification, to aid selecting suitable cultivars for targeted breeding, to improve a country’s date palm genetic diversity, and to certify the origin of date fruits and trees.
Collapse
Affiliation(s)
- Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine–Qatar, Doha, Qatar
| | - Sweety Mathew
- Bioinformatics Core, Weill Cornell Medicine–Qatar, Doha, Qatar
| | - Lisa S. Mathew
- Genomics Core, Weill Cornell Medicine–Qatar, Doha, Qatar
| | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine–Qatar, Doha, Qatar
- * E-mail: (KS); (JAM)
| | - Joel A. Malek
- Genomics Core, Weill Cornell Medicine–Qatar, Doha, Qatar
- * E-mail: (KS); (JAM)
| |
Collapse
|
25
|
Li C, Wang Y, Ai N, Li Y, Song J. A genome-wide association study of early-maturation traits in upland cotton based on the CottonSNP80K array. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:970-985. [PMID: 29877621 DOI: 10.1111/jipb.12673] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWASs) efficiently identify genetic loci controlling traits at a relatively high resolution. In this study, variations in major early-maturation traits, including seedling period (SP), bud period (BP), flower and boll period (FBP), and growth period (GP), of 169 upland cotton accessions were investigated, and a GWAS of early maturation was performed based on a CottonSNP80K array. A total of 49,650 high-quality single-nucleotide polymorphisms (SNPs) were screened, and 29 significant SNPs located on chromosomes A6, A7, A8, D1, D2, and D9, were repeatedly identified as associated with early-maturation traits, in at least two environments or two algorithms. Of these 29 significant SNPs, 1, 12, 11, and 5 were related to SP, BP, FBP, and GP, respectively. Six peak SNPs, TM47967, TM13732, TM20937, TM28428, TM50283, and TM72552, exhibited phenotypic contributions of approximately 10%, which could allow them to be used for marker-assisted selection. One of these, TM72552, as well as four other SNPs, TM72554, TM72555, TM72558, and TM72559, corresponded to the quantitative trait loci previously reported. In total, 274 candidate genes were identified from the genome sequences of upland cotton and were categorized based on their functional annotations. Finally, our studies identified Gh_D01G0340 and Gh_D01G0341 as potential candidate genes for improving cotton early maturity.
Collapse
Affiliation(s)
- Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province/Cotton Research Institute, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province/Cotton Research Institute, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Yue Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province/Cotton Research Institute, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiafeng Song
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province/Cotton Research Institute, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
26
|
Pandian S, Satish L, Rameshkumar R, Muthuramalingam P, Rency AS, Rathinapriya P, Ramesh M. Analysis of population structure and genetic diversity in an exotic germplasm collection of Eleusine coracana (L.) Gaertn. using genic-SSR markers. Gene 2018; 653:80-90. [DOI: 10.1016/j.gene.2018.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
|
27
|
Tan Z, Zhang Z, Sun X, Li Q, Sun Y, Yang P, Wang W, Liu X, Chen C, Liu D, Teng Z, Guo K, Zhang J, Liu D, Zhang Z. Genetic Map Construction and Fiber Quality QTL Mapping Using the CottonSNP80K Array in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2018; 9:225. [PMID: 29535744 PMCID: PMC5835031 DOI: 10.3389/fpls.2018.00225] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 05/04/2023]
Abstract
Cotton fiber quality traits are controlled by multiple quantitative trait loci (QTL), and the improvement of these traits requires extensive germplasm. Herein, an Upland cotton cultivar from America, Acala Maxxa, was crossed with a local high fiber quality cultivar, Yumian 1, and 180 recombinant inbred lines (RILs) were obtained. In order to dissect the genetic basis of fiber quality differences between these parents, a genetic map containing 12116 SNP markers was constructed using the CottonSNP80K assay, which covered 3741.81 cM with an average distance of 0.31 cM between markers. Based on the genetic map and growouts in three environments, we detected a total of 104 QTL controlling fiber quality traits. Among these QTL, 25 were detected in all three environments and 35 in two environments. Meanwhile, 19 QTL clusters were also identified, and nine contained at least one stable QTL (detected in three environments for a given trait). These stable QTL or QTL clusters are priorities for fine mapping, identifying candidate genes, elaborating molecular mechanisms of fiber development, and application in cotton breeding programs by marker-assisted selection (MAS).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Zhu QH, Yuan Y, Stiller W, Jia Y, Wang P, Pan Z, Du X, Llewellyn D, Wilson I. Genetic dissection of the fuzzless seed trait in Gossypium barbadense. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:997-1009. [PMID: 29351643 PMCID: PMC6018843 DOI: 10.1093/jxb/erx459] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Cotton fibres are single-celled trichomes arising from the epidermal cells of the seed coat and may be either long (lint) or very short (fuzz). The dominant fuzzless N1 of Gossypium hirsutum is a defective allele of the At-subgenome homoeolog of MYB25-like, but the genetic components underlying the recessive fuzzless trait from G. barbadense (Gb) are unknown. We have identified five genetic loci, including a major contributing locus containing MYB25-like_Dt, associated with Gb fuzzless seeds based on genotyping of fuzzy and fuzzless near isogenic lines (NILs) from an interspecies cross (G. barbadense × G. hirsutum). At 3 d post-anthesis when fuzz fibres are initiating, expression of MYB25-like_Dt was significantly lower in fuzzless NILs than in fuzzy seeded NILs, while higher MYB25-like_Dt expression was associated with more seed fuzz across different cotton genotypes. Phenotypic and genotypic analysis of MYB25-like homoeoalleles in cottons showing different fibre phenotypes and their crossing progeny indicated that both MYB25-like_At and MYB25-like_Dt are associated with lint development, and that fuzz development is mainly determined by the expression level of MYB25-like_Dt at ~3 d post-anthesis. Expression of Gb fuzzless seeds depends on genetic background and interactions amongst the multiple loci identified. MYB25-like_Dt is one of the best candidates for N2.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Correspondence: and
| | - Yuman Yuan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Warwick Stiller
- CSIRO Agriculture and Food, Locked, Narrabri, NSW, Australia
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Pengpeng Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | - Iain Wilson
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Correspondence: and
| |
Collapse
|
29
|
You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. FRONTIERS IN PLANT SCIENCE 2018; 9:104. [PMID: 29467780 PMCID: PMC5808122 DOI: 10.3389/fpls.2018.00104] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liping Xu
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Jianping Wang
| |
Collapse
|