1
|
Gao Z, Cao Q, Deng Z. Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients 2024; 16:3520. [PMID: 39458513 PMCID: PMC11510306 DOI: 10.3390/nu16203520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is the richest plant source of lignin secondary metabolites. Lignans from flax have been applied in the fields of food, medicine, and health due to their significant physiological activities. The most abundant lignan is secoisolariciresinol, which exists in a glycosylated form in plants. RESULTS After ingestion, it is converted by human intestinal flora into enterodiol and enterolactone, which both have physiological roles. Here, the basic structures, contents, synthesis, regulatory, and metabolic pathways, as well as extraction and isolation methods, of flax lignans were reviewed. Additionally, the physiological activity-related mechanisms and their impacts on human health, from the biosynthesis of lignans in plants to the physiological activity effects observed in animal metabolites, were examined. CONCLUSIONS The review elucidates that lignans, as phenolic compounds, not only function as active substances in plants but also offer significant nutritional values and health benefits when flax is consumed.
Collapse
Affiliation(s)
- Zhan Gao
- School of Physical Education and Training, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Qinglei Cao
- Department of Physical Education, University of Science and Technology Beijing, Beijing 100083, China; (Q.C.); (Z.D.)
| | - Zhongyuan Deng
- Department of Physical Education, University of Science and Technology Beijing, Beijing 100083, China; (Q.C.); (Z.D.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Moree S, Böhm L, Hoffmann T, Schwab WG. Kinetics of Secoisolariciresinol Glucosyltransferase LuUGT74S1 and Its Mutants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20005-20013. [PMID: 39213532 PMCID: PMC11403609 DOI: 10.1021/acs.jafc.4c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The lignan secoisolariciresinol (SECO) diglucoside (SDG) is a phytoestrogen with diverse effects. LuUGT74S1 glucosylates SECO to SDG, whereby only small amounts of the monoglucoside SMG are formed intermediately, which exhibit increased activity. To identify critical amino acids that are important for enzymatic activity and the SMG/SDG ratio, 3D structural modeling and docking, as well as site-directed mutation studies, were performed. Enzyme assays with ten mutants revealed that four of them had identical kinetic data to LuUGT74S1, while three showed reduced and one increased catalytic efficiency kcat/Km. S82F and E189L substitutions resulted in the complete absence of activity. A17 and Q136 are crucial for the conversion of SMG to SDG as A17S and Q136F mutants exhibited the highest SMG/SDG ratios of 0.7 and 0.4. Kinetic analyses show that diglucosylation is an essentially irreversible reaction, while monoglycosylation is kinetically favored. The results lay the foundation for the biotechnological production of SMG.
Collapse
Affiliation(s)
- Sadiq
Saleh Moree
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
- Department
of Biochemistry, University of Thamar, P.O. Box 87246, Sana’a-Tiaz
Road, Thamar 87246, Yemen
| | - Lukas Böhm
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| | - Wilfried G. Schwab
- Biotechnology
of Natural Products, Technische Universität
München, Liesel-Beckmann-Str.
1, Freising 85354, Germany
| |
Collapse
|
3
|
Singh G, Sharma S, Rawat S, Sharma RK. Plant Specialised Glycosides (PSGs): their biosynthetic enzymatic machinery, physiological functions and commercial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1009-1028. [PMID: 36038144 DOI: 10.1071/fp21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plants, the primary producers of our planet, have evolved from simple aquatic life to very complex terrestrial habitat. This habitat transition coincides with evolution of enormous chemical diversity, collectively termed as 'Plant Specialised Metabolisms (PSMs)', to cope the environmental challenges. Plant glycosylation is an important process of metabolic diversification of PSMs to govern their in planta stability, solubility and inter/intra-cellular transport. Although, individual category of PSMs (terpenoids, phenylpropanoids, flavonoids, saponins, alkaloids, phytohormones, glucosinolates and cyanogenic glycosides) have been well studied; nevertheless, deeper insights of physiological functioning and genomic aspects of plant glycosylation/deglycosylation processes including enzymatic machinery (CYPs, GTs, and GHs) and regulatory elements are still elusive. Therefore, this review discussed the paradigm shift on genomic background of enzymatic machinery, transporters and regulatory mechanism of 'Plant Specialised Glycosides (PSGs)'. Current efforts also update the fundamental understanding about physiological, evolutionary and adaptive role of glycosylation/deglycosylation processes during the metabolic diversification of PSGs. Additionally, futuristic considerations and recommendations for employing integrated next-generation multi-omics (genomics, transcriptomics, proteomics and metabolomics), including gene/genome editing (CRISPR-Cas) approaches are also proposed to explore commercial potential of PSGs.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India; and Present address: Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Sandeep Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Present address: G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Plaha NS, Awasthi S, Sharma A, Kaushik N. Distribution, biosynthesis and therapeutic potential of lignans. 3 Biotech 2022; 12:255. [PMID: 36065422 PMCID: PMC9440181 DOI: 10.1007/s13205-022-03318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022] Open
Abstract
Lignans have long been known for their abundant therapeutic properties due to their polyphenolic structure. Linseed is the richest plant source of lignans and has been studied widely for their properties. The most prevalent lignan, secoisolariciresinol diglucoside (SDG), is consumed with linseed and converted into mammalian lignans, enterodiol (END) and enterolactone (ENL), by the gut microbiota. SDG can easily be assessed using HPLC and its deglycosylated form viz secoisolariciresinol can be asses using GC-MS techniques. Variety of extraction and analysis methods has been reported for plant lignans. SDG is known to have therapeutic properties including anti-oxidant, anti-cancerous, anti-inflammatory, modulation of gene expression, anti-diabetic, estrogenic and anti-estrogenic. Despite a large number of bioactivities, strong evidences for the underlying mechanisms for most of the properties are still unknown. SDG is most studied for its anti-cancerous properties. But the use of lignans as anti-carcinogenic agent is limited and commercially not reported due to challenges of purification at commercial level, rapid metabolism, untargeted delivery and toxic compounds associated with lignans. Exploration of more prominent and active derivatives of SDG and their targeted drug delivery should be an important research toward the use of bioactive lignans of linseed.
Collapse
Affiliation(s)
- Navdeep Singh Plaha
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| | - Sumegha Awasthi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| | - Ayushi Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| |
Collapse
|
5
|
Ražná K, Harenčár Ľ, Kučka M. The Involvement of microRNAs in Plant Lignan Biosynthesis—Current View. Cells 2022; 11:cells11142151. [PMID: 35883592 PMCID: PMC9323225 DOI: 10.3390/cells11142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lignans, as secondary metabolites synthesized within a phenylpropanoid pathway, play various roles in plants, including their involvement in growth and plant defense processes. The health and nutritional benefits of lignans are unquestionable, and many studies have been devoted to these attributes. Although the regulatory role of miRNAs in the biosynthesis of secondary metabolites has been widely reported, there is no systematic review available on the miRNA-based regulatory mechanism of lignans biosynthesis. However, the genetic background of lignan biosynthesis in plants is well characterized. We attempted to put together a regulatory mosaic based on current knowledge describing miRNA-mediated regulation of genes, enzymes, or transcription factors involved in this biosynthesis process. At the same time, we would like to underline the fact that further research is necessary to improve our understanding of the miRNAs regulating plant lignan biosynthesis by exploitation of current approaches for functional identification of miRNAs.
Collapse
|
6
|
Impact of Microwave Thermal Processing on Major Grain Quality Traits of Linseed (Linum usitatissium L.). AGRIENGINEERING 2020. [DOI: 10.3390/agriengineering2020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study investigated the effects of thermal processing of the microwave technology on nutritive value, crude protein solubility, urease activity and amino acid profile on linseed grains. Samples were treated in a SAMSUNG GE82N-B microwave oven at 450W for 0 (L1), 60 (L2), 180 (L3), 300 (L4), and 420 (L5) seconds, respectively. Microwave treatment for 300 seconds showed a significant (p ≤ 0.05) decrease in activity urease comparing to raw linseed. The raw and treated linseed protein solubility index (PDI) show statistical differences (p ≤ 0.05) between all the treatments compared. High performance liquid chromatography (HPLC) analyses of samples differences in the amino acid composition between controls and experimental treatments showed that amino acids were not significantly affected (p ≥ 0.05), except isoleucine and leucine amino acid (p ≤ 0.05). From the results of the present study, it is possible to identify that the best method for improving linseed quality for animal feed is the application of microwave for 60 second (treatment L2). Our results indicate that microwave thermal processing or micronizing dry thermal processing of grains could be successfully used in large industrial feed production with a short period of time and the improved nutritional parameters of grains, increased shelf-life and the unchanged amino acid profile of treated grains.
Collapse
|
7
|
Anjum S, Komal A, Drouet S, Kausar H, Hano C, Abbasi BH. Feasible Production of Lignans and Neolignans in Root-derived In Vitro Cultures of Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E409. [PMID: 32218181 PMCID: PMC7238537 DOI: 10.3390/plants9040409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Flax lignans and neolignans impart health benefits, particularly in treating different types of cancers, due to their strong phytoestrogenic and antioxidant properties. The present study enhances the comprehension on the biosynthesis of antioxidant lignans and neolignans in root-derived in vitro cultures of flax (both callus and adventitious root). The results presented here clearly showed that the adventitious root culture efficiently produced a higher amount of lignans (at day 40) and neolignans (at day 30) than callus culture of flax. High performance liquid chromatography (HPLC) analysis revealed that the accumulations of secoisolariciresinol diglucoside (SDG, 5.5 mg g-1 DW (dry weight)) and dehydrodiconiferyl alcohol glucoside (DCG, 21.6 mg/g DW) were 2-fold higher, while guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG, 4.9 mg/g DW) and lariciresinol glucoside (LDG, 11.9 mg/g DW) contents were 1.5-fold higher in adventitious root culture than in callus culture. Furthermore, the highest level of total phenolic production (119.01 mg/L), with an antioxidant free radical scavenging activity of 91.01%, was found in adventitious root culture at day 40, while the maximum level of total flavonoid production (45.51 mg/L) was observed in callus culture at day 30 of growth dynamics. These results suggest that adventitious root culture can be a good candidate for scaling up to industrial level to commercially produce these pharmacologically and nutritionally valuable metabolites.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore-54000, Pakistan; (A.K.); (H.K.)
| | - Amna Komal
- Department of Biotechnology, Kinnaird College for Women, Lahore-54000, Pakistan; (A.K.); (H.K.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore-54000, Pakistan; (A.K.); (H.K.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan
| |
Collapse
|
8
|
Wilson AE, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1273-1288. [PMID: 31446648 DOI: 10.1111/tpj.14514] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 05/05/2023]
Abstract
Glycosylated metabolites generated by UDP-dependent glycosyltransferases (UGTs) play critical roles in plant interactions with the environment as well as human and animal nutrition. The evolution of plant UGTs has previously been explored, but with a limited taxon sampling. In this study, 65 fully sequenced plant genomes were analyzed, and stringent criteria for selection of candidate UGTs were applied to ensure a more comprehensive taxon sampling and reliable sequence inclusion. In addition to revealing the overall evolutionary landscape of plant UGTs, the phylogenomic analysis also resolved the phylogenetic association of UGTs from free-sporing plants and gymnosperms, and identified an additional UGT group (group R) in seed plants. Furthermore, lineage-specific expansions and contractions of UGT groups were detected in angiosperms, with the total number of UGTs per genome remaining constant generally. The loss of group Q UGTs in Poales and Brassicales, rather than functional convergence in the group Q containing species, was supported by a gene tree of group Q UGTs sampled from many species, and further corroborated by the absence of group Q homologs on the syntenic chromosomal regions in Arabidopsis thaliana (Brassicales). Branch-site analyses of the group Q UGT gene tree allowed for identification of branches and amino acid sites that experienced episodic positive selection. The positively selected sites are located on the surface of a representative group Q UGT (PgUGT95B2), away from the active site, suggesting their role in protein folding/stability or protein-protein interactions.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, Auguin D, Hano C, Fuss E, Lainé E. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. PLANTA 2019; 249:1695-1714. [PMID: 30895445 DOI: 10.1007/s00425-019-03137-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols. They catalyze two successive reduction steps leading to the production of lariciresinol or secoisolariciresinol from pinoresinol. Two secoisolariciresinol enantiomers can be synthetized with different fates. Depending on the plant species, these enantiomers are either final products (e.g., in the flaxseed where it is stored after glycosylation) or are the starting point for the synthesis of a wide range of lignans, among which the aryltetralin type lignans are used to semisynthesize anticancer drugs such as Etoposide®. Thus, the regulation of the gene expression of PLRs as well as the possible specificities of these reductases for one reduction step or one enantiomer are key factors to fine-tune the lignan synthesis. Results published in the last decade have shed light on the presence of more than one PLR in each plant and revealed various modes of action. Nevertheless, there are not many results published on the PLRs and most of them were obtained in a limited range of species. Indeed, a number of them deal with wild and cultivated flax belonging to the genus Linum. Despite the occurrence of lignans in bryophytes, pteridophytes and monocots, data on PLRs in these taxa are still missing and indeed the whole diversity of PLRs is still unknown. This review summarizes the data, published mainly in the last decade, on the PLR gene expression, enzymatic activity and biological function.
Collapse
Affiliation(s)
| | | | | | - Samantha Drouet
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Laurent Gutierrez
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Ivan Mateljak
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | - Daniel Auguin
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | | | - Elisabeth Fuss
- Interfaculty Institute of Biochemistry, Hoppe-Seyler-St. 4, 72076, Tübingen, Germany
| | - Eric Lainé
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France.
- LBLGC, INRA USC 1328 Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny, 28000, Chartres, France.
| |
Collapse
|
10
|
Markulin L, Drouet S, Corbin C, Decourtil C, Garros L, Renouard S, Lopez T, Mongelard G, Gutierrez L, Auguin D, Lainé E, Hano C. The control exerted by ABA on lignan biosynthesis in flax (Linum usitatissimum L.) is modulated by a Ca 2+ signal transduction involving the calmodulin-like LuCML15b. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:74-87. [PMID: 30928768 DOI: 10.1016/j.jplph.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 05/23/2023]
Abstract
The LuPLR1 gene encodes a pinoresinol lariciresinol reductase responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive lignan, highly accumulated in the seedcoat of flax (Linum usitatissimum L.). Abscisic acid (ABA) plays a key role in the regulation of LuPLR1 gene expression and lignan accumulation in both seeds and cell suspensions, which require two cis-acting elements (ABRE and MYB2) for this regulation. Ca2+ is a universal secondary messenger involved in a wide range of physiological processes including ABA signaling. Therefore, Ca2+ may be involved as a mediator of LuPLR1 gene expression and lignan biosynthesis regulation exerted by ABA. To test the potential implication of Ca2+ signaling, a pharmacological approach was conducted using both flax cell suspensions and maturing seed systems coupled with a ß-glucuronidase reporter gene experiment, RT-qPCR analysis, lignan quantification as well as Ca2+ fluorescence imaging. Exogenous ABA application results in an increase in the intracellular Ca2+ cytosolic concentration, originating mainly from the extracellular medium. Promoter-reporter deletion experiments suggest that the ABRE and MYB2 cis-acting elements of the LuPLR1 gene promoter functioned as Ca2+-sensitive sequences involved in the ABA-mediated regulation. The use of specific inhibitors pointed the crucial roles of the Ca2+ sensors calmodulin-like proteins and Ca2+-dependent protein kinases in this regulation. This regulation appeared conserved in the two different studied systems, i.e. cell suspensions and maturing seeds. A calmodulin-like, LuCML15b, identified from gene network analysis is proposed as a key player involved in this signal transduction since RNAi experiments provided direct evidences of this role. Taken together, these results provide new information on the regulation of plant defense and human health-promoting compounds, which could be used to optimize their production.
Collapse
Affiliation(s)
- Lucija Markulin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Cédric Decourtil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Tatiana Lopez
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, F-80039 Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, F-80039 Amiens, France
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Eric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA, USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France; Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS Université d'Orléans, rue de Chartres, F-45100 Orléans, France.
| |
Collapse
|
11
|
Kezimana P, Dmitriev AA, Kudryavtseva AV, Romanova EV, Melnikova NV. Secoisolariciresinol Diglucoside of Flaxseed and Its Metabolites: Biosynthesis and Potential for Nutraceuticals. Front Genet 2018; 9:641. [PMID: 30619466 PMCID: PMC6299007 DOI: 10.3389/fgene.2018.00641] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Secoisolariciresinol diglucoside (SDG), found mainly in flaxseed, is one of the essential lignans. SDG, as well as the beneficial fatty acid composition and high fiber content, has made flaxseed an important source of functional food or nutraceutical ingredients. Various studies have shown that SDG offers several health benefits, including protective effects against cardiovascular diseases, diabetes, cancer, and mental stress. These health benefits have been attributed to the antioxidant properties of SDG. Additionally, SDG metabolites, namely mammalian lignans, enterodiol and enterolactone, have shown promising effects against cancer. Therefore, understanding the biosynthetic pathway of SDG and its molecular mechanisms is a key to enable the production of new flaxseed cultivars rich in nutraceutical content. The present review highlights studies on the different health benefits of SDG, as well as lignan biosynthesis in flaxseed and genes involved in the biosynthetic pathway. Since SDG, the predominant lignan in flaxseed, is a glycosylated lignan, we also focus on studies investigating the genes involved in secoisolariciresinol glycosylation. These genes can be used to produce new cultivars with a novel level of glycosylation or lignan composition to maximize the yields of lignans with a therapeutic or protective potential.
Collapse
Affiliation(s)
- Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Romanova
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Garros L, Drouet S, Corbin C, Decourtil C, Fidel T, Lebas de Lacour J, Leclerc EA, Renouard S, Tungmunnithum D, Doussot J, Abassi BH, Maunit B, Lainé É, Fliniaux O, Mesnard F, Hano C. Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax ( Linum usitatissimum L.) Seeds. Molecules 2018; 23:molecules23102636. [PMID: 30322184 PMCID: PMC6222607 DOI: 10.3390/molecules23102636] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.
Collapse
Affiliation(s)
- Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Cédric Decourtil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Thibaud Fidel
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Julie Lebas de Lacour
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Emilie A Leclerc
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Joël Doussot
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Le CNAM, Ecole Sciences Industrielles et Technologies de l'Information (SITI), Chimie Alimentation Santé Environnement Risque (CASER), 75141 Paris Cedex 3, France.
| | - Bilal Haider Abassi
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Department of Biotechnology, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Benoit Maunit
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Ophélie Fliniaux
- Biologie des Plantes et Innovation (BIOPI) EA 3900, Université de Picardie Jules Verne, 80000 Amiens, France.
| | - François Mesnard
- Biologie des Plantes et Innovation (BIOPI) EA 3900, Université de Picardie Jules Verne, 80000 Amiens, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| |
Collapse
|
13
|
Fofana B, Ghose K, Somalraju A, McCallum J, Main D, Deyholos MK, Rowland GG, Cloutier S. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles. FRONTIERS IN PLANT SCIENCE 2017; 8:1638. [PMID: 28983308 PMCID: PMC5613138 DOI: 10.3389/fpls.2017.01638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Kaushik Ghose
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Ashok Somalraju
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Jason McCallum
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - David Main
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | | | - Gordon G. Rowland
- Department of Plant Science, Crop Development Centre, University of SaskatchewanSaskatoon, SK, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| |
Collapse
|