1
|
Zhang X, Chen B, Song X, Wang Y, Zheng C, Gong Z. Laser microdissection and fluorescence in situ hybridization reveal the tissue-specific gene expression in the ovules of P. tabulaeformis Carr. JOURNAL OF PLANT PHYSIOLOGY 2025; 309:154500. [PMID: 40288108 DOI: 10.1016/j.jplph.2025.154500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Ovules are important carriers for seed plant reproduction, and ovules of gymnosperms are composed mainly of female gametophyte (FG) and adjacent diploid tissue (ADT). To investigate tissue-specific genes in the ovules of Pinus tabulaeformis Carr., we used laser microdissection (LMD) to separate FGs and ADTs, and performed linear amplification to construct cDNA libraries, obtaining a total of 156 expressed sequence tags (EST). Furthermore, some differentially expressed genes between FG and ADT of P. tabulaeformis ovule were screened by the analysis of EST. In addition, the expression levels of key genes in fertile line (FL) and sterile line (SL) ovules during development were verified by RT-qPCR, and we found that both PtRPL7a and PtDHN4 were more highly expressed in FL in each period (at least 1.7 times that of SL). Finally, fluorescence in situ hybridization (FISH) was used to reveal the temporal and spatial expression patterns of PtRPL7a and PtDHN4 in the ovules of P. tabuliformis during ovule development between FL and SL. Our results indicate that the expression levels and the locations of PtRPL7a and PtDHN4 show significant differences in different tissues during ovule development between FL and SL. This study further elucidates the molecular mechanism of the ovule abortion of P. tabulaeformis and provides a theoretical basis for the germplasm optimization of gymnosperms.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, 130118, China
| | - Binli Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoxin Song
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingqi Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zaixin Gong
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, 130118, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Yamada K, Nakanowatari M, Yumoto E, Satoh S, Asahina M. Spatiotemporal plant hormone analysis from cryosections using laser microdissection-liquid chromatography-mass spectrometry. JOURNAL OF PLANT RESEARCH 2022; 135:377-386. [PMID: 34812978 DOI: 10.1007/s10265-021-01360-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Laser microdissection (LMD) is used for isolating specific regions or single cells from a wide variety of tissue samples under direct microscopic observation. The LMD method enables the harvest of the cells of interest in a region or specific cells for several analyses, such as DNA/RNA analysis, proteomics, metabolomics, and other molecular analyses. Currently, LMD is used to study various biological events at the tissue or cellular level; it has been used in a wide range of research fields. In this report, we describe techniques for isolating different tissues/specific cells from cryosections of incised Arabidopsis flowering stems by LMD for spatiotemporal quantitative plant hormone analysis. The endogenous indole-3-acetic acid levels in the epidermis/cortex, vascular bundles, and pith of Arabidopsis flowering stems were approximately 19.0 pg mm-3, 33.5 pg mm-3, and 3.32 pg mm-3, respectively, and these endogenous levels were altered spatiotemporally after incision. We also analyzed jasmonic acid from LMD-isolated cells and showed that the endogenous levels increased in the range of approximately 200-3,500 pg mm-3 depending on the tissue and region at 1 h after incision and then decreased to less than 100 pg mm-3 or undetectable levels at 24 h after incision. Quantitative analyses of phytohormones, including jasmonic acid-related molecules, gibberellin, abscisic acid, and cytokinins, could also be performed using the same cell samples. These results showed that spatiotemporal changes in plant hormones could be quantitatively and simultaneously analyzed by LMD-isolated cells from cryosections with positional information. The combination of quantitative analysis by liquid chromatography-mass spectrometry (LC-MS) and sampling by the LMD method provides a comprehensive and quantitative understanding of spatiotemporal changes in plant hormones in a region- and tissue-specific manner. Therefore, LMD-LC-MS methods will contribute to our understanding of the physiological events that control the process of plant growth and development.
Collapse
Affiliation(s)
- Kazuki Yamada
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Miyuki Nakanowatari
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masashi Asahina
- Graduate School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
| |
Collapse
|
3
|
Velada I, Menéndez E, Teixeira RT, Cardoso H, Peixe A. Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. BIOLOGY 2021; 10:biology10030209. [PMID: 33801829 PMCID: PMC7999021 DOI: 10.3390/biology10030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Only a small portion of the stem cells participate in the process of adventitious root formation and the cells/tissues types involved in this process is species-dependent. In olive, it is still unclear which type of cells acquire competence for rooting. Regardless, the entire stem nodal segment (containing a mixture of distinct cell types) continues to be used in studies related to the molecular mechanisms underlying this process. Laser microdissection (LM) technology has been applied to isolate specific tissue and cell types. However, it is difficult to find a standard LM protocol suitable for all plant species and cell types and, thus, LM procedures must be developed and optimized for each particular tissue. In this study, we aimed to evaluate the efficiency of a LM protocol in olive microcuttings stem-base samples. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types used for further high-quality RNA isolation. This will encourage future cell type-specific transcriptomic studies, contributing at deciphering rooting-competent cells in olive stems and to better understand the molecular mechanisms underlying the process of adventitious root formation. Abstract Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples’ anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
- Correspondence:
| | - Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Rita Teresa Teixeira
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development and Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
4
|
Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, Bassil NV, Hytönen T, Mackenzie KK, Lee S, Jung S, Main D, Barbey CR, Verma S. A roadmap for research in octoploid strawberry. HORTICULTURE RESEARCH 2020; 7:33. [PMID: 32194969 PMCID: PMC7072068 DOI: 10.1038/s41438-020-0252-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
The cultivated strawberry (Fragaria × ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
Collapse
Affiliation(s)
- Vance M Whitaker
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Steven J Knapp
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Michael A Hardigan
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Patrick P Edger
- 3Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Janet P Slovin
- USDA-ARS Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MA 20705 USA
| | - Nahla V Bassil
- 5USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333 USA
| | - Timo Hytönen
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- 7Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- NIAB EMR, Kent, ME19 6BJ UK
| | - Kathryn K Mackenzie
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
| | - Seonghee Lee
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sook Jung
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Dorrie Main
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Christopher R Barbey
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sujeet Verma
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| |
Collapse
|