1
|
Azarin K, Usatov A, Kasianova A, Makarenko M, Gavrilova V. Origin of CMS-PET1 cytotype in cultivated sunflower: A new insight. Gene 2023; 888:147801. [PMID: 37714278 DOI: 10.1016/j.gene.2023.147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The vast majority of commercial sunflower hybrids worldwide are produced using cytoplasmic male sterility (CMS) of the PET1 type, resulting from the interspecific hybridization of Helianthus petiolaris with Helianthus annuus. Due to the fact that CMS-PET1 was not previously detected in wild sunflower, it was believed that this cytotype could arise during interspecific hybridization and is specific solely for cultivated sunflower. In this study, the open reading frame, orfH522, associated with the CMS-PET1 phenotype, was revealed for the first time in the 3'-flanking region of the mitochondrial atpA gene in wild H. annuus. An analysis of whole genome data from 1089 accessions showed that the frequency of occurrence of CMS-orfH522 in wild H. annuus populations is 3.58%, while in wild H. petiolaris populations, it is 1.26%. In general, the analysis demonstrated that PET1-CMS is a natural cytotype of H. annuus, and the appearance of the CMS phenotype in cultivated sunflowers is associated with the loss of stabilizing nuclear genes of fertility restorers, which occurred during interspecific hybridization. These data can explain the patterns of differential cytoplasmic and nuclear introgression occurring in wild sunflower and are useful for further evolutionary studies.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, 344006 Rostov-on-Don, Russia.
| | | | | | - Maksim Makarenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Vera Gavrilova
- N.I. Vavilov All Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia
| |
Collapse
|
2
|
Cao Y, Yin D, Pang B, Li H, Liu Q, Zhai Y, Ma N, Shen H, Jia Q, Wang D. Assembly and phylogenetic analysis of the mitochondrial genome of endangered medicinal plant Huperzia crispata. Funct Integr Genomics 2023; 23:295. [PMID: 37691055 DOI: 10.1007/s10142-023-01223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Huperzia crispata is a traditional Chinese herb plant and has attracted special attention in recent years for its products Hup A can serve as an acetylcholinesterase inhibitor (AChEI). Although the chloroplast (cp) genome of H. crispata has been studied, there are no reports regarding the Huperzia mitochondrial (mt) genome since the previously reported H. squarrosa has been revised as Phlegmariurus squarrosus. The mt genome of H. crispata was sequenced using a combination of long-read nanopore and Illumina sequencing platforms. The entire H. crispata mt genome was assembled in a circular with a length of 412,594 bp and a total of 91 genes, including 45 tRNAs, 6 rRNAs, 37 protein-coding genes (PCGs), and 3 pseudogenes. Notably, the rps8 gene was present in P. squarrosus and a pseudogene rps8 was presented in H. crispata, which was lacking in most of Pteridophyta and Gymnospermae. Intron-encoded maturase (mat-atp9i85 and mat-cobi787) genes were present in H. crispata and P. squarrosus, but lost in other examined lycophytes, ferns, and Gymnospermae plants. Collinearity analysis showed that the mt genome of H. crispata and P. squarrossus is highly conservative compared to other ferns. Relative synonymous codon usage (RSCU) analysis showed that the amino acids most frequently found were phenylalanine (Phe) (4.77%), isoleucine (Ile) (4.71%), lysine (Lys) (4.26%), while arginine (Arg) (0.32%), and histidine (His) (0.42%) were rarely found. Simple sequence repeats (SSR) analysis revealed that a total of 114 SSRs were identified in the mt genome of H. crispata and account for 0.35% of the whole mt genome. Monomer repeats were the majority types of SSRs and represent 91.89% of the total SSRs. In addition, a total of 1948 interspersed repeats (158 forward, 147 palindromic, and 5 reverse repeats) with a length ranging from 30 bp to 14,945 bp were identified in the H. crispata mt genome and the 30-39-bp repeats were the most abundant type. Gene transfer analysis indicated that a total of 12 homologous fragments were discovered between the cp and mt genomes of H. crispata, accounting for 0.93% and 2.48% of the total cp and mt genomes, respectively. The phylogenetic trees revealed that H. crispata was the sister of P. squarrosus. The Ka/Ks analysis results suggested that most PCGs, except atp6 gene, were subject to purification selection during evolution. Our study provides extensive information on the features of the H. crispata mt genome and will help unravel evolutionary relationships, and molecular identification within lycophytes.
Collapse
Affiliation(s)
- Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Bo Pang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Haibo Li
- Yuyao Seedling Management Station, Ningbo, Zhejiang, 315400, China
| | - Qiao Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Yufeng Zhai
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Hongjun Shen
- Ningbo Delai Medicinal Material Planting Co, Ltd, 315444, Ningbo, Zhejiang, 315444, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China.
| |
Collapse
|
3
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Ranaware AS, Kunchge NS, Lele SS, Ochatt SJ. Protoplast Technology and Somatic Hybridisation in the Family Apiaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1060. [PMID: 36903923 PMCID: PMC10005591 DOI: 10.3390/plants12051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Species of the family Apiaceae occupy a major market share but are hitherto dependent on open pollinated cultivars. This results in a lack of production uniformity and reduced quality that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to use biotechnology approaches including somatic hybridization. We discuss the use of protoplast technology for the development of somatic hybrids, cybrids and in-vitro breeding of commercial traits such as CMS (cytoplasmic male sterility), GMS (genetic male sterility) and EGMS (environment-sensitive genic male sterility). The molecular mechanism(s) underlying CMS and its candidate genes are also discussed. Cybridization strategies based on enucleation (Gamma rays, X-rays and UV rays) and metabolically arresting protoplasts with chemicals such as iodoacetamide or iodoacetate are reviewed. Differential fluorescence staining of fused protoplast as routinely used can be replaced by new tagging approaches using non-toxic proteins. Here, we focused on the initial plant materials and tissue sources for protoplast isolation, the various digestion enzyme mixtures tested, and on the understanding of cell wall re-generation, all of which intervene in somatic hybrids regeneration. Although there are no alternatives to somatic hybridization, various approaches also discussed are emerging, viz., robotic platforms, artificial intelligence, in recent breeding programs for trait identification and selection.
Collapse
Affiliation(s)
- Ankush S. Ranaware
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Nandkumar S. Kunchge
- Research and Development Division, Kalash Seeds Pvt. Ltd., Jalna 431203, Maharashtra, India
| | - Smita S. Lele
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Sergio J. Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
5
|
Wei L, Liu TJ, Hao G, Ge XJ, Yan HF. Comparative analyses of three complete Primula mitogenomes with insights into mitogenome size variation in Ericales. BMC Genomics 2022; 23:770. [PMID: 36424546 PMCID: PMC9686101 DOI: 10.1186/s12864-022-08983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Wu L, Nie L, Guo S, Wang Q, Wu Z, Lin Y, Wang Y, Li B, Gao T, Yao H. Identification of Medicinal Bidens Plants for Quality Control Based on Organelle Genomes. Front Pharmacol 2022; 13:842131. [PMID: 35242042 PMCID: PMC8887618 DOI: 10.3389/fphar.2022.842131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bidens plants are annuals or perennials of Asteraceae and usually used as medicinal materials in China. They are difficult to identify by using traditional identification methods because they have similar morphologies and chemical components. Universal DNA barcodes also cannot identify Bidens species effectively. This situation seriously hinders the development of medicinal Bidens plants. Therefore, developing an accurate and effective method for identifying medicinal Bidens plants is urgently needed. The present study aims to use phylogenomic approaches based on organelle genomes to address the confusing relationships of medicinal Bidens plants. Illumina sequencing was used to sequence 12 chloroplast and eight mitochondrial genomes of five species and one variety of Bidens. The complete organelle genomes were assembled, annotated and analysed. Phylogenetic trees were constructed on the basis of the organelle genomes and highly variable regions. The organelle genomes of these Bidens species had a conserved gene content and codon usage. The 12 chloroplast genomes of the Bidens species were 150,489 bp to 151,635 bp in length. The lengths of the eight mitochondrial genomes varied from each other. Bioinformatics analysis revealed the presence of 50–71 simple sequence repeats and 46–181 long repeats in the organelle genomes. By combining the results of mVISTA and nucleotide diversity analyses, seven candidate highly variable regions in the chloroplast genomes were screened for species identification and relationship studies. Comparison with the complete mitochondrial genomes and common protein-coding genes shared by each organelle genome revealed that the complete chloroplast genomes had the highest discriminatory power for Bidens species and thus could be used as a super barcode to authenticate Bidens species accurately. In addition, the screened highly variable region trnS-GGA-rps4 could be also used as a potential specific barcode to identify Bidens species.
Collapse
Affiliation(s)
- Liwei Wu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Nie
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiying Guo
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Qing Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjun Wu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Yulin Lin
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoli Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Gao
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hui Yao
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
- *Correspondence: Hui Yao,
| |
Collapse
|
7
|
Kuwabara K, Harada I, Matsuzawa Y, Ariizumi T, Shirasawa K. Organelle genome assembly uncovers the dynamic genome reorganization and cytoplasmic male sterility associated genes in tomato. HORTICULTURE RESEARCH 2021; 8:250. [PMID: 34848681 PMCID: PMC8632925 DOI: 10.1038/s41438-021-00676-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
To identify cytoplasmic male sterility (CMS)-associated genes in tomato, we determined the genome sequences of mitochondria and chloroplasts in three CMS tomato lines derived from independent asymmetric cell fusions, their nuclear and cytoplasmic donors, and male fertile weedy cultivated tomato and wild relatives. The structures of the CMS mitochondrial genomes were highly divergent from those of the nuclear and cytoplasmic donors, and genes of the donors were mixed up in these genomes. On the other hand, the structures of CMS chloroplast genomes were moderately conserved across the donors, but CMS chloroplast genes were unexpectedly likely derived from the nuclear donors. Comparative analysis of the structures and contents of organelle genes and transcriptome analysis identified three genes that were uniquely present in the CMS lines, but not in the donor or fertile lines. RNA-sequencing analysis indicated that these three genes transcriptionally expressed in anther, and identified different RNA editing levels in one gene, orf265, that was partially similar to ATP synthase subunit 8, between fertile and sterile lines. The orf265 was a highly potential candidate for CMS-associated gene. This study suggests that organelle reorganization mechanisms after cell fusion events differ between mitochondria and chloroplasts, and provides insight into the development of new F1 hybrid breeding programs employing the CMS system in tomato.
Collapse
Affiliation(s)
- Kosuke Kuwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Issei Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | | | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
- Tsukuba Plant Innovation Research Center, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan.
| |
Collapse
|
8
|
Makarenko MS, Omelchenko DO, Usatov AV, Gavrilova VA. The Insights into Mitochondrial Genomes of Sunflowers. PLANTS (BASEL, SWITZERLAND) 2021; 10:1774. [PMID: 34579307 PMCID: PMC8466785 DOI: 10.3390/plants10091774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The significant difference in the mtDNA size and structure with simultaneous slow evolving genes makes the mitochondrial genome paradoxical among all three DNA carriers in the plant cell. Such features make mitochondrial genome investigations of particular interest. The genus Helianthus is a diverse taxonomic group, including at least two economically valuable species-common sunflower (H. annuus) and Jerusalem artichoke (H. tuberosus). The successful investigation of the sunflower nuclear genome provided insights into some genomics aspects and significantly intensified sunflower genetic studies. However, the investigations of organelles' genetic information in Helianthus, especially devoted to mitochondrial genomics, are presented by limited studies. Using NGS sequencing, we assembled the complete mitochondrial genomes for H. occidentalis (281,175 bp) and H. tuberosus (281,287 bp) in the current investigation. Besides the master circle chromosome, in the case of H. tuberosus, the 1361 bp circular plasmid was identified. The mitochondrial gene content was found to be identical for both sunflower species, counting 32 protein-coding genes, 3 rRNA, 23 tRNA genes, and 18 ORFs. The comparative analysis between perennial sunflowers revealed common and polymorphic SSR and SNPs. Comparison of perennial sunflowers with H. annuus allowed us to establish similar rearrangements in mitogenomes, which have possibly been inherited from a common ancestor after the divergence of annual and perennial sunflower species. It is notable that H. occidentalis and H. tuberosus mitogenomes are much more similar to H. strumosus than H. grosseserratus.
Collapse
Affiliation(s)
- Maksim S. Makarenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia;
| | - Denis O. Omelchenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia;
| | - Alexander V. Usatov
- The Department of Genetics, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Vera A. Gavrilova
- Oil and Fiber Crops Genetic Resources Department, The N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia;
| |
Collapse
|
9
|
Liu T, Arsenault J, Vierling E, Kim M. Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential for growth and heat stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:713-726. [PMID: 33974298 DOI: 10.1111/tpj.15317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 05/11/2023]
Abstract
As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.
Collapse
Affiliation(s)
- Tianxiang Liu
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jesse Arsenault
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Minsoo Kim
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
The Investigation of Perennial Sunflower Species ( Helianthus L.) Mitochondrial Genomes. Genes (Basel) 2020; 11:genes11090982. [PMID: 32846894 PMCID: PMC7565312 DOI: 10.3390/genes11090982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Helianthus is a diverse taxonomic group with approximately 50 species. Most sunflower genomic investigations are devoted to economically valuable species, e.g., H. annuus, while other Helianthus species, especially perennial, are predominantly a blind spot. In the current study, we have assembled the complete mitogenomes of two perennial species: H. grosseserratus (273,543 bp) and H. strumosus (281,055 bp). We analyzed their sequences and gene profiles in comparison to the available complete mitogenomes of H. annuus. Except for sdh4 and trnA-UGC, both perennial sunflower species had the same gene content and almost identical protein-coding sequences when compared with each other and with annual sunflowers (H. annuus). Common mitochondrial open reading frames (ORFs) (orf117, orf139, and orf334) in sunflowers and unique ORFs for H. grosseserratus (orf633) and H. strumosus (orf126, orf184, orf207) were identified. The maintenance of plastid-derived coding sequences in the mitogenomes of both annual and perennial sunflowers and the low frequency of nonsynonymous mutations point at an extremely low variability of mitochondrial DNA (mtDNA) coding sequences in the Helianthus genus.
Collapse
|
11
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
12
|
Logacheva MD, Schelkunov MI, Fesenko AN, Kasianov AS, Penin AA. Mitochondrial Genome of Fagopyrum esculentum and the Genetic Diversity of Extranuclear Genomes in Buckwheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E618. [PMID: 32408719 PMCID: PMC7285332 DOI: 10.3390/plants9050618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022]
Abstract
Fagopyrum esculentum (common buckwheat) is an important agricultural non-cereal grain plant. Despite extensive genetic studies, the information on its mitochondrial genome is still lacking. Using long reads generated by single-molecule real-time technology coupled with circular consensus sequencing (CCS) protocol, we assembled the buckwheat mitochondrial genome and detected that its prevalent form consists of 10 circular chromosomes with a total length of 404 Kb. In order to confirm the presence of a multipartite structure, we developed a new targeted assembly tool capable of processing long reads. The mitogenome contains all genes typical for plant mitochondrial genomes and long inserts of plastid origin (~6.4% of the total mitogenome length). Using this new information, we characterized the genetic diversity of mitochondrial and plastid genomes in 11 buckwheat cultivars compared with the ancestral subspecies, F. esculentum ssp. ancestrale. We found it to be surprisingly low within cultivars: Only three to six variations in the mitogenome and one to two in the plastid genome. In contrast, the divergence with F. esculentum ssp. ancestrale is much higher: 220 positions differ in the mitochondrial genome and 159 in the plastid genome. The SNPs in the plastid genome are enriched in non-synonymous substitutions, in particular in the genes involved in photosynthesis: psbA, psbC, and psbH. This presumably reflects the selection for the increased photosynthesis efficiency as a part of the buckwheat breeding program.
Collapse
Affiliation(s)
- Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Aleksey N. Fesenko
- Federal Scientific Center of Legumes and Groat Crops, 302502 Orel, Russia;
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| |
Collapse
|
13
|
Makarenko MS, Usatov AV, Tatarinova TV, Azarin KV, Logacheva MD, Gavrilova VA, Kornienko IV, Horn R. Organization Features of the Mitochondrial Genome of Sunflower ( Helianthus annuus L.) with ANN2-Type Male-Sterile Cytoplasm. PLANTS (BASEL, SWITZERLAND) 2019; 8:E439. [PMID: 31652744 PMCID: PMC6918226 DOI: 10.3390/plants8110439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022]
Abstract
This study provides insights into the flexibility of the mitochondrial genome in sunflower (Helianthus annuus L.) as well as into the causes of ANN2-type cytoplasmic male sterility (CMS). De novo assembly of the mitochondrial genome of male-sterile HA89(ANN2) sunflower line was performed using high-throughput sequencing technologies. Analysis of CMS ANN2 mitochondrial DNA sequence revealed the following reorganization events: twelve rearrangements, seven insertions, and nine deletions. Comparisons of coding sequences from the male-sterile line with the male-fertile line identified a deletion of orf777 and seven new transcriptionally active open reading frames (ORFs): orf324, orf327, orf345, orf558, orf891, orf933, orf1197. Three of these ORFs represent chimeric genes involving atp6 (orf1197), cox2 (orf558), and nad6 (orf891). In addition, orf558, orf891, orf1197, as well as orf933, encode proteins containing membrane domain(s), making them the most likely candidate genes for CMS development in ANN2. Although the investigated CMS phenotype may be caused by simultaneous action of several candidate genes, we assume that orf1197 plays a major role in developing male sterility in ANN2. Comparative analysis of mitogenome organization in sunflower lines representing different CMS sources also allowed identification of reorganization hot spots in the mitochondrial genome of sunflower.
Collapse
Affiliation(s)
- Maksim S Makarenko
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
| | - Alexander V Usatov
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
| | - Tatiana V Tatarinova
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
- Department of Biology, University of La Verne, La Verne, CA 91750, USA.
- Vavilov Institute of General Genetics, Moscow 119333, Russia.
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia.
| | - Kirill V Azarin
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
| | - Maria D Logacheva
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Vera A Gavrilova
- The N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg 190121, Russia.
| | - Igor V Kornienko
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
- Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia.
| | - Renate Horn
- Institute of Biological Sciences, Plant Genetics, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
14
|
Orlov YL, Salina EA, Eslami G, Kochetov AV. Plant biology research at BGRS-2018. BMC PLANT BIOLOGY 2019; 19:56. [PMID: 30813889 PMCID: PMC6393955 DOI: 10.1186/s12870-019-1634-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Yuriy L. Orlov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, Department of Parasitology and Mycology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alex V. Kochetov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|