1
|
Wang W, Sun J, Fan C, Yuan G, Zhou R, Lu J, Liu J, Wang C. RcSRR1 interferes with the RcCSN5B-mediated deneddylation of RcCRL4 to modulate RcCO proteolysis and prevent rose flowering under red light. HORTICULTURE RESEARCH 2025; 12:uhaf025. [PMID: 40206513 PMCID: PMC11979331 DOI: 10.1093/hr/uhaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/12/2025] [Indexed: 04/11/2025]
Abstract
Light is essential for rose (Rosa spp.) growth and development. Different light qualities play differing roles in the rose floral transition, but the molecular mechanisms underlying their effects are not fully understood. Here, we observed that red light suppresses rose flowering and increases the expression of sensitivity to red light reduced 1 (RcSRR1) compared with white light. Virus-induced gene silencing (VIGS) of RcSRR1 led to early flowering under white light and especially under red light, suggesting that this gene is a flowering repressor with a predominant function under red light. We determined that RcSRR1 interacts with the COP9 signalosome subunit 5B (RcCSN5B), while RcCSN5B, RcCOP1, and RcCO physically interact with each other. Furthermore, the RcCSN5B-induced deneddylation of Cullin4-RING E3 ubiquitin ligase (RcCRL4) in rose was reduced by the addition of RcSRR1, suggesting that the interaction between RcSRR1 and RcCSN5B relieves the deneddylation of the RcCRL4-COP1/SPA complex to enhance RcCO proteolysis, which subsequently suppresses the transcriptional activation of RcFT and ultimately flowering. Far-red light-related sequence like 1 (RcFRSL3) was shown to specifically bind to the G-box motif of the RcSRR1 promoter to repress its transcription, removing its inhibition of RcFT expression and inducing flowering. Red light inhibited RcFRSL3 expression, thereby promoting the expression of RcSRR1 to inhibit flowering. Taken together, these results provide a previously uncharacterized mechanism by which the RcFRSL3-RcSRR1-RcCSN5B module targets RcCO stability to regulate flowering under different light conditions in rose plants.
Collapse
Affiliation(s)
- Weinan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Guozhen Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Rui Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| |
Collapse
|
2
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
3
|
Gu J, Guan Z, Jiao Y, Liu K, Hong D. The story of a decade: Genomics, functional genomics, and molecular breeding in Brassica napus. PLANT COMMUNICATIONS 2024; 5:100884. [PMID: 38494786 PMCID: PMC11009362 DOI: 10.1016/j.xplc.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the major global sources of edible vegetable oil and is also used as a feed and pioneer crop and for sightseeing and industrial purposes. Improvements in genome sequencing and molecular marker technology have fueled a boom in functional genomic studies of major agronomic characters such as yield, quality, flowering time, and stress resistance. Moreover, introgression and pyramiding of key functional genes have greatly accelerated the genetic improvement of important traits. Here we summarize recent progress in rapeseed genomics and genetics, and we discuss effective molecular breeding strategies by exploring these findings in rapeseed. These insights will extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture throughout the world.
Collapse
Affiliation(s)
- Jianwei Gu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Life Science and Technology, Hubei Engineering University, Xiaogan 432100 Hubei, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 Hubei, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Yazhouwan National Laboratory, Sanya 572024 Hainan, China.
| |
Collapse
|
4
|
Johansson M, Steffen A, Lewinski M, Kobi N, Staiger D. HDF1, a novel flowering time regulator identified in a mutant suppressing sensitivity to red light reduced 1 early flowering. Sci Rep 2023; 13:1404. [PMID: 36697433 PMCID: PMC9876914 DOI: 10.1038/s41598-023-28049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Arabidopsis SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) delays the transition from vegetative to reproductive development in noninductive conditions. A second-site suppressor screen for novel genes that overcome early flowering of srr1-1 identified a range of suppressor of srr1-1 mutants flowering later than srr1-1 in short photoperiods. Here, we focus on mutants flowering with leaf numbers intermediate between srr1-1 and Col. Ssm67 overcomes srr1-1 early flowering independently of day-length and ambient temperature. Full-genome sequencing and linkage mapping identified a causative SNP in a gene encoding a Haloacid dehalogenase superfamily protein, named HAD-FAMILY REGULATOR OF DEVELOPMENT AND FLOWERING 1 (HDF1). Both, ssm67 and hdf1-1 show increased levels of FLC, indicating that HDF1 is a novel regulator of this floral repressor. HDF1 regulates flowering largely independent of SRR1, as the effect is visible in srr1-1 and in Col, but full activity on FLC may require SRR1. Furthermore, srr1-1 has a delayed leaf initiation rate that is dependent on HDF1, suggesting that SRR1 and HDF1 act together in leaf initiation. Another mutant flowering intermediate between srr1-1 and wt, ssm15, was identified as a new allele of ARABIDOPSIS SUMO PROTEASE 1, previously implicated in the regulation of FLC stability.
Collapse
Affiliation(s)
- Mikael Johansson
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| | - Alexander Steffen
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Natalie Kobi
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
5
|
Schiessl S. Regulation and Subfunctionalization of Flowering Time Genes in the Allotetraploid Oil Crop Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:605155. [PMID: 33329678 PMCID: PMC7718018 DOI: 10.3389/fpls.2020.605155] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 05/03/2023]
Abstract
Flowering is a vulnerable, but crucial phase in building crop yield. Proper timing of this period is therefore decisive in obtaining optimal yields. However, genetic regulation of flowering integrates many different environmental signals and is therefore extremely complex. This complexity increases in polyploid crops which carry two or more chromosome sets, like wheat, potato or rapeseed. Here, I summarize the current state of knowledge about flowering time gene copies in rapeseed (Brassica napus), an important oil crop with a complex polyploid history and a close relationship to Arabidopsis thaliana. The current data show a high demand for more targeted studies on flowering time genes in crops rather than in models, allowing better breeding designs and a deeper understanding of evolutionary principles. Over evolutionary time, some copies of rapeseed flowering time genes changed or lost their original role, resulting in subfunctionalization of the respective homologs. For useful applications in breeding, such patterns of subfunctionalization need to be identified and better understood.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- *Correspondence: Sarah Schiessl,
| |
Collapse
|