1
|
Serson WR, Gishini MFS, Stupar RM, Stec AO, Armstrong PR, Hildebrand D. Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds. Genes (Basel) 2024; 15:892. [PMID: 39062671 PMCID: PMC11276498 DOI: 10.3390/genes15070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Since the dawn of agriculture, crops have been genetically altered for desirable characteristics. This has included the selection of natural and induced mutants. Increasing the production of plant oils such as soybean (Glycine max) oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybeans, however, usually results in reduced seed protein. A soybean fast neutron population was screened for oil content, and three high oil mutants with minimal reductions in protein levels were found. Three backcross F2 populations derived from these mutants exhibited segregation for seed oil content. DNA was pooled from the high-oil and normal-oil plants within each population and assessed by comparative genomic hybridization. A deletion encompassing 20 gene models on chromosome 14 was found to co-segregate with the high-oil trait in two of the three populations. Eighteen genes in the deleted region have known functions that appear unrelated to oil biosynthesis and accumulation pathways, while one of the unknown genes (Glyma.14G101900) may contribute to the regulation of lipid droplet formation. This high-oil trait can facilitate the breeding of high-oil soybeans without protein reduction, resulting in higher meal protein levels.
Collapse
Affiliation(s)
- William R. Serson
- Department of Biology, Penn State University, Lehigh Valley, Center Valley, PA 18034, USA
| | | | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA; (R.M.S.); (A.O.S.)
| | - Adrian O. Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA; (R.M.S.); (A.O.S.)
| | - Paul R. Armstrong
- United States Department of Agriculture-Agricultural Research Service, Manhattan, KS 66502, USA
| | - David Hildebrand
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
2
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
3
|
Islam N, Krishnan HB, Natarajan SS. Protein profiling of fast neutron soybean mutant seeds reveals differential accumulation of seed and iron storage proteins. PHYTOCHEMISTRY 2022; 200:113214. [PMID: 35469783 DOI: 10.1016/j.phytochem.2022.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
A fast neutron (FN) radiated mutant soybean (Glycine max (L.) Merr., Fabaceae) displaying large duplications exhibited an increase in total seed protein content. A tandem mass tag (TMT) based protein profiling of matured seeds resulted in the identification of 4338 proteins. Gene duplication resulted in a significant increase in several seed storage proteins and protease inhibitors. Among the storage proteins, basic 7 S globulin, glycinin G4, and beta-conglycinin showed higher abundance in matured FN mutant seeds in addition to protease inhibitors. A significantly higher abundance of L-ascorbate peroxidases, acid phosphatases, and iron storage proteins was also observed. A higher amount of albumin, sucrose synthase, iron storage, and ascorbate family proteins in the mutant seeds was observed at the mid-stage of seed filling. We anticipate that the duplicated genes might have a cascading effect on the genome constituents, thus, resulting in increased storage and iron-containing protein content in the mutant seeds.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
4
|
Islam N, Krishnan HB, Natarajan S. Quantitative proteomic analyses reveal the dynamics of protein and amino acid accumulation during soybean seed development. Proteomics 2022; 22:e2100143. [PMID: 34825757 DOI: 10.1002/pmic.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022]
Abstract
Using high throughput tandem mass tag (TMT) based tagging technique, we identified 4172 proteins in three developmental stages: early, mid, and late seed filling. We mapped the identified proteins to metabolic pathways associated with seed filling. The elevated abundance of several kinases was observed from the early to mid-stages of seed filling, indicating that protein phosphorylation was a significant event during this period. The early to late seed filling stages were characterized by an increased abundance of proteins associated with the cell wall, oil, and vacuolar-related processes. Among the seed storage proteins, 7S (β-subunit) and 11S (Gy3, Gy4, Gy5) steadily increased in abundance during early to late stages of seed filling, whereas 2S albumin exhibited a decrease in abundance during the same period. An increased abundance of proteases, senescence-associated proteins, and oil synthesis proteins was observed from the mid to late seed filling stages. The mid to late stages of seed filling was also characterized by a lower abundance of transferases, transporters, Kunitz family trypsin, and protease inhibitors. Two enzymes associated with methionine synthesis exhibited lower abundance from early to late stages. This study unveiled several essential enzymes/proteins related to amino acid and protein synthesis and their accumulation during seed development. All data can be accessed through this link: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=38784ecbd0854bb3801afc0d89056f84. (Accession MSV000087577).
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, Maryland, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA Agricultural Research Service, University of Missouri, Columbia, Missouri, USA
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, Maryland, USA
| |
Collapse
|
5
|
Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Ghosh S, Feng Y, Huai Y, Gebregziabher BS, Li J, Li B, Sun J. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Islam N, Krishnan HB, Natarajan S. Proteomic Profiling of Fast Neutron-Induced Soybean Mutant Unveiled Pathways Associated with Increased Seed Protein Content. J Proteome Res 2020; 19:3936-3944. [PMID: 32819100 DOI: 10.1021/acs.jproteome.0c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutagenesis through fast neutron (FN) radiation of soybean resulted in a mutant with a 15% increase in seed protein content. A comparative genomic hybridization analysis confirmed that the mutant is lacking 24 genes located at chromosomes 5 and 10. A tandem mass tag-based proteomic profiling of the wild type and the FN mutant revealed 3,502 proteins, of which 206 proteins exhibited increased abundance and 214 proteins showed decreased abundance. Among the abundant proteins, basic 7S globulin increased fourfold, followed by vacuolar-sorting receptor and protein transporters. The differentially expressed proteins were mapped on the global metabolic pathways. It was observed that there was an enrichment of 29 ribosomal proteins, 16 endoplasmic reticular proteins, and several proteins in export metabolic pathways. The deletion of the sequence-specific DNA binding transcription factor along with 23 other genes may have altered the negative regulation of protein syntheses processes, resulting in an increase in the overall protein content of the mutant seed. This mutant is a valuable resource for researchers to understand the metabolic pathways that may affect an increase in seed protein content (the mass spectrometry data files were submitted to massive.ucsd.edu # MassIVE MSV000084228).
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, Missouri 65211, United States
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| |
Collapse
|
7
|
Kambhampati S, Aznar-Moreno JA, Hostetler C, Caso T, Bailey SR, Hubbard AH, Durrett TP, Allen DK. On the Inverse Correlation of Protein and Oil: Examining the Effects of Altered Central Carbon Metabolism on Seed Composition Using Soybean Fast Neutron Mutants. Metabolites 2019; 10:E18. [PMID: 31905618 PMCID: PMC7022410 DOI: 10.3390/metabo10010018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Protein and oil levels measured at maturity are inversely correlated across soybean lines; however, carbon is in limited supply during maturation resulting in tradeoffs for the production of other reserves including oligosaccharides. During the late stages of seed development, the allocation of carbon for storage reserves changes. Lipid and protein levels decline while concentrations of indigestible raffinose family oligosaccharides (RFOs) increase, leading to a decreased crop value. Since the maternal source of carbon is diminished during seed maturation stages of development, carbon supplied to RFO synthesis likely comes from an internal, turned-over source and may contribute to the reduction in protein and lipid content in mature seeds. In this study, fast neutron (FN) mutagenized soybean populations with deletions in central carbon metabolic genes were examined for trends in oil, protein, sugar, and RFO accumulation leading to an altered final composition. Two lines with concurrent increases in oil and protein, by combined 10%, were identified. A delayed switch in carbon allocation towards RFO biosynthesis resulted in extended lipid accumulation and without compromising protein. Strategies for future soybean improvement using FN resources are described.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Jose A. Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Cooper Hostetler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Tara Caso
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Sally R. Bailey
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132, USA;
| | - Allen H. Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132, USA;
| |
Collapse
|