1
|
Wen J, Shi J, Meng M, Xu K, Xu Y, Ji D, Wang W, Xie C. Metabolic Responses of Pyropia haitanensis to Dehydration-Rehydration Cycles Revealed by Metabolomics. Mar Drugs 2025; 23:203. [PMID: 40422793 DOI: 10.3390/md23050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Pyropia haitanensis (T.J. Chang and B.F. Zheng) undergoes periodic dehydration and rehydration cycles, necessitating robust adaptive mechanisms. Despite extensive research on its physiological responses to desiccation stress, the comprehensive metabolic pathways and recovery mechanisms post-rehydration remain poorly understood. This study investigated the metabolic responses of P. haitanensis to varying degrees of desiccation stress using LC-MS and UPLC-MS/MS. Under mild dehydration, the thallus primarily accumulated sugars and proline, while moderate and severe dehydration triggered the accumulation of additional osmoprotectants like alanine betaine and trehalose to maintain turgor pressure and water retention. Concurrently, the alga activated a potent antioxidant system, including enzymes and non-enzymatic antioxidants, to counteract the increased reactive oxygen species levels and prevent oxidative damage. Hormonal regulation also plays a crucial role in stress adaptation, with salicylic acid and jasmonic acid upregulating under mild dehydration and cytokinins and gibberellin GA15 accumulating under severe stress. Rehydration triggered the recovery process, with indole acetic acid, abscisic acid, and jasmonic acid promoting rapid cell recovery. Additionally, arachidonic acid, acting as a signaling molecule, induced general stress resistance, facilitating the adaptation of the thallus to the dynamic intertidal environment. These findings reveal P. haitanensis' metabolic adaptation strategies in intertidal environments, with implications for enhancing cultivation and stress resistance in this economically important seaweed.
Collapse
Affiliation(s)
- Jian Wen
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Jianzhi Shi
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Muhan Meng
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Ningde 352100, China
| |
Collapse
|
2
|
Feng R, Chen Q, Xu Y, Ji D, Xie C, Wang W. An animal-type Na +/K +-ATPase, PhNKA2, is involved in the salt tolerance of the intertidal macroalga Pyropia haitanensis. FRONTIERS IN PLANT SCIENCE 2025; 16:1571241. [PMID: 40357162 PMCID: PMC12066774 DOI: 10.3389/fpls.2025.1571241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025]
Abstract
Intertidal red algae, are more tolerant to salt stress than terrestrial plants, contain a Na+ transporter (Na+/K+-ATPase) that is homologous to animal Na+/K+-ATPases. Although two Na+/K+ pump genes from Pyropia/Porphyra were cloned and their differential expression patterns under salt stress were analyzed, the regulatory mechanism of Na+/K+-ATPase genes in Na+ expulsion and K+ retention process under salt stress remains largely unknown. In this study, we cloned and characterized the animal-type Na+/K+-ATPase gene PhNKA2 in Pyropia haitanensis. The encoded protein was revealed to contain an N-terminal cation-transporting ATPase, E1/E2 ATPase, hydrolase, and a C-terminal cation-transporting ATPase. PhNKA2 was highly conserved in Porphyra/Pyropia. The expression of PhNKA2 in gametophytes was significantly induced by hypersalinity, while there was no obvious change in sporophytes. The heterologous expression of PhNKA2 in Chlamydomonas reinhardtii clearly increased salt tolerance. Na+ efflux and K+ influx were significantly greater in the transgenic C. reinhardtii than in the wild-type control. Furthermore, yeast two-hybrid assays suggested that the interaction between the deubiquitinating enzyme USP5 and PhNKA2 might be critical for the deubiquitination and stabilization of important proteins during the P. haitanensis response to salt stress. The interaction with MSRB2, DHPS, or GDCST may prevent the oxidation of PhNKA2, while actin depolymerization might stimulate Na+/K+-ATPase-dependent membrane trafficking. The results of this study provide new insights into the salt tolerance of intertidal seaweed as well as the underlying molecular basis.
Collapse
Affiliation(s)
- Rongrong Feng
- Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Qi Chen
- Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| |
Collapse
|
3
|
Xie J, Ji D, Xu Y, Xu K, Xie C, Wang W. Genome-Wide Identification and Functional Analysis of C2H2 Zinc Finger Transcription Factor Genes in the Intertidal Macroalga Pyropia haitanensis. Int J Mol Sci 2025; 26:4042. [PMID: 40362281 PMCID: PMC12071319 DOI: 10.3390/ijms26094042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
The possible regulatory effects of C2H2 zinc finger proteins, which are important transcription factors, on intertidal seaweed responses to abiotic stress are unclear. This study was conducted to comprehensively analyze the C2H2 gene family of a representative intertidal seaweed species (Pyropia haitanensis) and clarify its genomic characteristics and biological functions. A total of 107 PhC2H2 zinc finger protein-encoding genes distributed on five P. haitanensis chromosomes were identified and divided into three subgroups. The expression levels of 85, 61, 58, 45, and 41 PhC2H2 genes responded in the maturation of filaments, high-temperature, salt, low-irradiance, and dehydration stress, respectively. The PhC2H2 gene family was conserved during Porphyra evolution, with no indications of large-scale genome-wide replication events. On average, PhC2H2 genes had more transposable element (TE) insertions than Pyropia yezoensis and Porphyra umbilicalisC2H2 genes, suggesting that TE insertions may have been the main driver of PhC2H2 gene family expansion. A key gene (PhC2H2.94) screened following a quantitative trait locus analysis was significantly responsive to high-temperature stress and was associated with photosynthesis, peroxisomes, the ubiquitin proteasome pathway, and the endoplasmic reticulum-related protein processing pathway, which contribute to the stress tolerance of P. haitanensis. Additionally, PhC2H2.94 transgenic Chlamydomonas reinhardtii exhibited increased tolerance to heat stress. This study provides new insights and genetic resources for characterizing the molecular mechanism underlying intertidal seaweed responses to abiotic stresses and breeding stress-resistant macroalgae.
Collapse
Affiliation(s)
- Jiajia Xie
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
4
|
Wang W, Ge Q, Wen J, Zhang H, Guo Y, Li Z, Xu Y, Ji D, Chen C, Guo L, Xu M, Shi C, Fan G, Xie C. Horizontal gene transfer and symbiotic microorganisms regulate the adaptive evolution of intertidal algae, Porphyra sense lato. Commun Biol 2024; 7:976. [PMID: 39128935 PMCID: PMC11317521 DOI: 10.1038/s42003-024-06663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intertidal algae may adapt to environmental challenges by acquiring genes from other organisms and relying on symbiotic microorganisms. Here, we obtained a symbiont-free and chromosome-level genome of Pyropia haitanensis (47.2 Mb), a type of intertidal algae, by using multiple symbiont screening methods. We identified 286 horizontal gene transfer (HGT) genes, 251 of which harbored transposable elements (TEs), reflecting the importance of TEs for facilitating the transfer of genes into P. haitanensis. Notably, the bulked segregant analysis revealed that two HGT genes, sirohydrochlorin ferrochelatase and peptide-methionine (R)-S-oxide reductase, play a significant role in the adaptation of P. haitanensis to heat stress. Besides, we found Pseudomonas, Actinobacteria, and Bacteroidetes are the major taxa among the symbiotic bacteria of P. haitanensis (nearly 50% of the HGT gene donors). Among of them, a heat-tolerant actinobacterial strain (Saccharothrix sp.) was isolated and revealed to be associated with the heat tolerance of P. haitanensis through its regulatory effects on the genes involved in proline synthesis (proC), redox homeostasis (ggt), and protein folding (HSP20). These findings contribute to our understanding of the adaptive evolution of intertidal algae, expanding our knowledge of the HGT genes and symbiotic microorganisms to enhance their resilience and survival in challenging intertidal environments.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Qijin Ge
- BGI Research, Qingdao, 266555, China
| | - Jian Wen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Han Zhang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yanling Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Zongtang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | | | | | - Chengcheng Shi
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
5
|
Guan ZJ, Zheng M, Tang ZX, Wei W, Stewart CN. Proteomic Analysis of Bt cry1Ac Transgenic Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2319. [PMID: 37375944 DOI: 10.3390/plants12122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Oilseed rape (Brassica napus L.) is an important cash crop, but transgenic oilseed rape has not been grown on a commercial scale in China. It is necessary to analyze the characteristics of transgenic oilseed rape before commercial cultivation. In our study, differential expression of total protein from the leaves in two transgenic lines of oilseed rape expressing foreign Bt Cry1Ac insecticidal toxin and their non-transgenic parent plant was analyzed using a proteomic approach. Only shared changes in both of the two transgenic lines were calculated. Fourteen differential protein spots were analyzed and identified, namely, eleven upregulated expressed protein spots and three downregulated protein spots. These proteins are involved in photosynthesis, transporter function, metabolism, protein synthesis, and cell growth and differentiation. The changes of these protein spots in transgenic oilseed rape may be attributable to the insertion of the foreign transgenes. However, the transgenic manipulation might not necessarily cause significant change in proteomes of the oilseed rape.
Collapse
Affiliation(s)
- Zheng-Jun Guan
- Department of Life Sciences, Yuncheng University, Yuncheng 044000, China
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Zheng
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Department of Hotel Management, Linyi Technician Institute, Linyi 276005, China
| | - Zhi-Xi Tang
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, 2505 EJ Chapman Drive, Knoxville, TN 37996-4561, USA
| |
Collapse
|
6
|
Contreras-Porcia L, Meynard A, Piña F, Kumar M, Lovazzano C, Núñez A, Flores-Molina MR. Desiccation Stress Tolerance in Porphyra and Pyropia Species: A Latitudinal Analysis along the Chilean Coast. PLANTS (BASEL, SWITZERLAND) 2022; 12:12. [PMID: 36616141 PMCID: PMC9824847 DOI: 10.3390/plants12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
One of the most important factors regulating the distribution and abundance of seaweeds is desiccation, triggered mainly by tidal changes and climatic variation. Porphyra and Pyropia species have evolved multiple strategies to tolerate desiccation stress; however, how these tolerance strategies differ in these species inhabiting different latitudes is still unknown. In this context, we analyzed, in situ, the physiological responses of these species (collected from 18° S to 41° S along the Chilean coast) to desiccation stress using biochemical and molecular analyses. The hyper-arid terrestrial climate of northern Chile, with high evaporation and lack of constant rain determines a very steep increase in desiccation stress in the upper intertidal during low tide for these species. Accordingly, the results showed that, in comparison with the southernmost populations, the Porphyra/Pyropia species from the north zone of Chile (18°-30° S) exhibited higher contents of lipoperoxide and carbonyls (1.6-1.9 fold) together with higher enzymatic activities, including ascorbate peroxidase, catalase, peroxiredoxin, and thioredoxin (2-3-fold). In addition, a substantial expression of cat, prx, and trx transcripts during desiccation was demonstrated, mainly in the northernmost populations. These results provide evidence of (i) significant activation of antioxidant enzymes and transcripts (principally cat and prx); (ii) participation of phenolic antioxidant compounds as a highly plastic physiological strategy to cope with desiccation; and (iii) the activation of the tolerance responses was affected by species latitudinal distribution. Thus, for the first time, this study integrated the biochemical and genetic responses of diverse Porphyra/Pyropia species to better understand their physiological dynamics of tolerance over a wide latitudinal range.
Collapse
Affiliation(s)
- Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Florentina Piña
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Manoj Kumar
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Carlos Lovazzano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Alejandra Núñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - María Rosa Flores-Molina
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| |
Collapse
|
7
|
Carotenoids participate in adaptation/resistance of daily desiccation in the intertidal red alga Neopyropia yezoensis (Bangiales, Rhodophyta). ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
|
9
|
Liang Z, Liu F, Wang W, Zhang P, Yuan Y, Yao H, Sun X, Wang F. A reasonable strategy for Caulerpa lentillifera J. Agardh (Bryopsidales, Chlorophyta) transportation based on the biochemical and photophysiological responses to dehydration stress. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Wang W, Chen T, Xu Y, Xu K, Xu Y, Ji D, Chen C, Xie C. Investigating the mechanisms underlying the hyposaline tolerance of intertidal seaweed, Pyropia haitanensis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|