1
|
Cao S, Liu B, Wang D, Rasheed A, Xie L, Xia X, He Z. Orchestrating seed storage protein and starch accumulation toward overcoming yield-quality trade-off in cereal crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:468-483. [PMID: 38409921 DOI: 10.1111/jipb.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Collapse
Affiliation(s)
- Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Bingyan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Awais Rasheed
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Liu B, Li L, Fu C, Zhang Y, Bai B, Du J, Zeng J, Bian Y, Liu S, Song J, Luo X, Xie L, Sun M, Xu X, Xia X, Cao S. Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:165. [PMID: 37392240 DOI: 10.1007/s00122-023-04410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
KEY MESSAGE We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers. Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m2. Among them, QDGF.caas-7A is co-located with QTGW.caas-7A and can explain 39.4-64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that TaSus2-2B and Rht-B1 were candidate genes for QTGW.caas-2B and the QTL cluster (QTGW.caas-4B, QGNS.caas-4B, and QSN.caas-4B), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.
Collapse
Affiliation(s)
- Bingyan Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chao Fu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jianqi Zeng
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Mengjing Sun
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaowan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
3
|
Tang H, Dong H, Guo X, Cheng M, Li M, Chen Q, Yuan Z, Pu Z, Wang J. Identification of candidate gene for the defective kernel phenotype using bulked segregant RNA and exome capture sequencing methods in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1173861. [PMID: 37342127 PMCID: PMC10277647 DOI: 10.3389/fpls.2023.1173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023]
Abstract
Wheat is a significant source of protein and starch worldwide. The defective kernel (Dek) mutant AK-3537, displaying a large hollow area in the endosperm and shrunken grain, was obtained through ethyl methane sulfonate (EMS) treatment of the wheat cultivar Aikang 58 (AK58). The mode of inheritance of the AK-3537 grain Dek phenotype was determined to be recessive with a specific statistical significance level. We used bulked segregant RNA-seq (BSR-seq), BSA-based exome capture sequencing (BSE-seq), and the ΔSNP-index algorithm to identify candidate regions for the grain Dek phenotype. Two major candidate regions, DCR1 (Dek candidate region 1) and DCR2, were identified on chromosome 7A between 279.98 and 287.93 Mb and 565.34 and 568.59 Mb, respectively. Based on transcriptome analysis and previous reports, we designed KASP genotyping assays based on SNP variations in the candidate regions and speculated that the candidate gene is TraesCS7A03G0625900 (HMGS-7A), which encodes a 3-hydroxy-3-methylglutaryl-CoA synthase. One SNP variation located at position 1,049 in the coding sequence (G>A) causes an amino acid change from Gly to Asp. The research suggests that functional changes in HMGS-7A may affect the expression of key enzyme genes involved in wheat starch syntheses, such as GBSSII and SSIIIa.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaojiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Singh A, Mathan J, Yadav A, K. Goyal A, Chaudhury A. Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects. CEREAL GRAINS - VOLUME 1 2021. [DOI: 10.5772/intechopen.99318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Cereals are a rich source of vitamins, minerals, carbohydrates, fats, oils and protein, making them the world’s most important source of nutrition. The influence of rising global population, as well as the emergence and spread of disease, has the major impact on cereal production. To meet the demand, there is a pressing need to increase cereal production. Optimal seed development is a key agronomical trait that contributes to crop yield. The seed development and maturation is a complex process that includes not only embryo and endosperm development, but also accompanied by huge physiological, biochemical, metabolic, molecular and transcriptional changes. This chapter discusses the growth of cereal seed and highlights the novel biological insights, with a focus on transgenic and new molecular breeding, as well as biotechnological intervention strategies that have improved crop yield in two major cereal crops, primarily wheat and rice, over the last 21 years (2000–2021).
Collapse
|