1
|
Liu X, Wang D, Zhang Z, Lin X, Xiao J. Epigenetic perspectives on wheat speciation, adaptation, and development. Trends Genet 2025:S0168-9525(25)00083-6. [PMID: 40348655 DOI: 10.1016/j.tig.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Bread wheat (Triticum aestivum) has undergone a complex evolutionary history shaped by polyploidization, domestication, and adaptation. Recent advances in multiomics approaches have shed light on the role of epigenetic mechanisms, including DNA methylation, histone modification, chromatin accessibility, and noncoding RNAs, in regulating gene expression throughout these processes. Epigenomic reprogramming contributes to genome stability and subgenome differentiation and modulates key agronomic traits by influencing flowering time, environmental responses, and developmental programs. This review synthesizes current insights into epigenetic regulation of wheat speciation, adaptation, and development, highlighting their potential applications in crop improvement. A deeper understanding of these mechanisms will facilitate targeted breeding strategies leveraging epigenetic variations to enhance wheat resilience and productivity in the face of changing environments.
Collapse
Affiliation(s)
- Xuemei Liu
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoheng Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelei Lin
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, CAS, Beijing, 100101, China.
| |
Collapse
|
2
|
Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, Esteban E, Pasha A, Kaduchová K, Krautsova M, Červenková M, Šafář J, Provart NJ, Simon R, Pecinka A. The transcriptome landscape of developing barley seeds. THE PLANT CELL 2024; 36:2512-2530. [PMID: 38635902 PMCID: PMC11218782 DOI: 10.1093/plcell/koae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.
Collapse
Affiliation(s)
- Martin Kovacik
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Anna Nowicka
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30 239 Kraków, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Beáta Strejčková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Isaia Vardanega
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Kateřina Kaduchová
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Maryna Krautsova
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Marie Červenková
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Zhang J, Zhang Z, Zhang R, Yang C, Zhang X, Chang S, Chen Q, Rossi V, Zhao L, Xiao J, Xin M, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:200-215. [PMID: 37752705 PMCID: PMC10754016 DOI: 10.1111/pbi.14180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.
Collapse
Affiliation(s)
- Jianing Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Siyuan Chang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Sahu A, Singh R, Verma PK. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. PLANTA 2023; 258:31. [PMID: 37368167 DOI: 10.1007/s00425-023-04188-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
MAIN CONCLUSION This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Collapse
Affiliation(s)
- Anubhav Sahu
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Cheng K, Lei C, Zhang S, Zheng Q, Wei C, Huang W, Xing M, Zhang J, Zhang X, Zhang X. Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:66. [PMID: 36721081 PMCID: PMC9890721 DOI: 10.1186/s12870-023-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. RESULTS Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. CONCLUSION We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Kai Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Cangbao Lei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Siyuan Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Qiao Zheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Chunyan Wei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Weiyi Huang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Minghui Xing
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiangyu Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China.
| |
Collapse
|
6
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
7
|
Milec Z, Strejčková B, Šafář J. Contemplation on wheat vernalization. FRONTIERS IN PLANT SCIENCE 2023; 13:1093792. [PMID: 36684728 PMCID: PMC9853533 DOI: 10.3389/fpls.2022.1093792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the VERNALIZATION1 (VRN1) gene as a key player in the vernalization response. VRN1 belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss VRN1 allelic variation, review vernalization models, talk VRN1 copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.
Collapse
|
8
|
Yadav N, Nagar P, Rakhi R, Kumar A, Rai A, Mustafiz A. Transcript profiling of Polycomb gene family in Oryza sativa indicates their abiotic stress-specific response. Funct Integr Genomics 2022; 22:1211-1227. [PMID: 36197542 DOI: 10.1007/s10142-022-00906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The precise regulation of gene expression is required for the determination of cell fate, differentiation, and developmental programs in eukaryotes. The Polycomb Group (PcG) genes are the key transcriptional regulators that constitute the repressive system, with two major protein complexes, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2). Previous studies have demonstrated the significance of these proteins in regulation of normal growth and development processes. However, the role of PcG in adaptation of crops to abiotic stress is still not well understood. The present study aimed to a comprehensive genome-wide identification of the PcG gene family in one of the economically important staple crops, Oryza sativa. Here, a total of 14 PcG genes have been identified, which were distributed over eight chromosomes. Protein structure analysis revealed that both the complexes have distinct domain and motifs that are conserved within the complexes. In silico promoter analysis showed that PcG gene promoters have abundance of abiotic stress-responsive elements. RNA-seq based expression analysis revealed that PcG genes are differentially expressed in different tissues and responded variably in different environmental stress. Validation of gene expression by qRT-PCR showed that most of the genes were upregulated at 1-h time point in shoot tissue and at 24-h time point in root tissue under the drought and salinity stress conditions. These findings provide important and extensive information on the PcG family of O. sativa, which will pave the path for understanding their role in stress signaling in plants.
Collapse
Affiliation(s)
- Nikita Yadav
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - R Rakhi
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Archita Rai
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
9
|
Povilus RA, Friedman WE. Transcriptomes across fertilization and seed development in the water lily Nymphaea thermarum (Nymphaeales): evidence for epigenetic patterning during reproduction. PLANT REPRODUCTION 2022; 35:161-178. [PMID: 35184212 DOI: 10.1007/s00497-022-00438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The first record of gene expression during seed development within the Nymphaeales provides evidence for a variety of biological processes, including dynamic epigenetic patterning during sexual reproduction in the water lily Nymphaea thermarum. Studies of gene expression during seed development have been performed for a growing collection of species from a phylogenetically broad sampling of flowering plants (angiosperms). However, angiosperm lineages whose origins predate the divergence of monocots and eudicots have been largely overlooked. In order to provide a new resource for understanding the early evolution of seed development in flowering plants, we sequenced transcriptomes of whole ovules and seeds from three key stages of reproductive development in the waterlily Nymphaea thermarum, an experimentally tractable member of the Nymphaeales. We first explore patterns of gene expression, beginning with mature ovules and continuing through fertilization into early- and mid-stages of seed development. We find patterns of gene expression that corroborate histological/morphological observations of seed development in this species, such as expression of genes involved in starch synthesis and transcription factors that have been associated with embryo and endosperm development in other species. We also find evidence for processes that were previously not known to be occurring during seed development in this species, such as epigenetic modification. We then examine the expression of genes associated with patterning DNA and histone methylation-processes that are essential for seed development in distantly related and structurally diverse monocots and eudicots. Around 89% of transcripts putatively homologous to DNA and histone methylation modifiers are expressed during seed development in N. thermarum, including homologs of genes known to pattern imprinting-related epigenetic modifications. Our results suggest that dynamic epigenetic patterning is a deeply conserved aspect of angiosperm seed development.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA.
| |
Collapse
|
10
|
Vijayanathan M, Trejo-Arellano MG, Mozgová I. Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective. EPIGENOMES 2022; 6:3. [PMID: 35076495 PMCID: PMC8788455 DOI: 10.3390/epigenomes6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - María Guadalupe Trejo-Arellano
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - Iva Mozgová
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
In-Depth Sequence Analysis of Bread Wheat VRN1 Genes. Int J Mol Sci 2021; 22:ijms222212284. [PMID: 34830166 PMCID: PMC8626038 DOI: 10.3390/ijms222212284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
The VERNALIZATION1 (VRN1) gene encodes a MADS-box transcription factor and plays an important role in the cold-induced transition from the vegetative to reproductive stage. Allelic variability of VRN1 homoeologs has been associated with large differences in flowering time. The aim of this study was to investigate the genetic variability of VRN1 homoeologs (VRN-A1, VRN-B1 and VRN-D1). We performed an in-depth sequence analysis of VRN1 homoeologs in a panel of 105 winter and spring varieties of hexaploid wheat. We describe the novel allele Vrn-B1f with an 836 bp insertion within intron 1 and show its specific expression pattern associated with reduced heading time. We further provide the complete sequence of the Vrn-A1b allele, revealing a 177 bp insertion in intron 1, which is transcribed into an alternative splice variant. Copy number variation (CNV) analysis of VRN1 homoeologs showed that VRN-B1 and VRN-D1 are present in only one copy. The copy number of recessive vrn-A1 ranged from one to four, while that of dominant Vrn-A1 was one or two. Different numbers of Vrn-A1a copies in the spring cultivars Branisovicka IX/49 and Bastion did not significantly affect heading time. We also report on the deletion of secondary structures (G-quadruplex) in promoter sequences of cultivars with more vrn-A1 copies.
Collapse
|
12
|
Genome-Wide Identification and Analysis of the Polycomb Group Family in Medicago truncatula. Int J Mol Sci 2021; 22:ijms22147537. [PMID: 34299158 PMCID: PMC8303337 DOI: 10.3390/ijms22147537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Polycomb group (PcG) proteins, which are important epigenetic regulators, play essential roles in the regulatory networks involved in plant growth, development, and environmental stress responses. Currently, as far as we know, no comprehensive and systematic study has been carried out on the PcG family in Medicago truncatula. In the present study, we identified 64 PcG genes with distinct gene structures from the M. truncatula genome. All of the PcG genes were distributed unevenly over eight chromosomes, of which 26 genes underwent gene duplication. The prediction of protein interaction network indicated that 34 M. truncatula PcG proteins exhibited protein-protein interactions, and MtMSI1;4 and MtVRN2 had the largest number of protein-protein interactions. Based on phylogenetic analysis, we divided 375 PcG proteins from 27 species into three groups and nine subgroups. Group I and Group III were composed of five components from the PRC1 complex, and Group II was composed of four components from the PRC2 complex. Additionally, we found that seven PcG proteins in M. truncatula were closely related to the corresponding proteins of Cicer arietinum. Syntenic analysis revealed that PcG proteins had evolved more conservatively in dicots than in monocots. M. truncatula had the most collinearity relationships with Glycine max (36 genes), while collinearity with three monocots was rare (eight genes). The analysis of various types of expression data suggested that PcG genes were involved in the regulation and response process of M. truncatula in multiple developmental stages, in different tissues, and for various environmental stimuli. Meanwhile, many differentially expressed genes (DEGs) were identified in the RNA-seq data, which had potential research value in further studies on gene function verification. These findings provide novel and detailed information on the M. truncatula PcG family, and in the future it would be helpful to carry out related research on the PcG family in other legumes.
Collapse
|
13
|
Post-Embryonic Phase Transitions Mediated by Polycomb Repressive Complexes in Plants. Int J Mol Sci 2021; 22:ijms22147533. [PMID: 34299153 PMCID: PMC8305008 DOI: 10.3390/ijms22147533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Correct timing of developmental phase transitions is critical for the survival and fitness of plants. Developmental phase transitions in plants are partially promoted by controlling relevant genes into active or repressive status. Polycomb Repressive Complex1 (PRC1) and PRC2, originally identified in Drosophila, are essential in initiating and/or maintaining genes in repressive status to mediate developmental phase transitions. Our review summarizes mechanisms in which the embryo-to-seedling transition, the juvenile-to-adult transition, and vegetative-to-reproductive transition in plants are mediated by PRC1 and PRC2, and suggests that PRC1 could act either before or after PRC2, or that they could function independently of each other. Details of the exact components of PRC1 and PRC2 in each developmental phase transitions and how they are recruited or removed will need to be addressed in the future.
Collapse
|
14
|
Publisher Correction to: BMC Plant Biology, Volume 20, supplement 1. BMC PLANT BIOLOGY 2021; 21:43. [PMID: 33451282 PMCID: PMC7809815 DOI: 10.1186/s12870-020-02802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
|